SYNTHESIS AND CHARACTERIZATION OF ITACONIC ACID BASED HYDROGELS

Yazarlar

  • Hidayet Mazı Gaziantep Üniversitesi

Anahtar Kelimeler:

Metilen Mavisi, İtakonik Asit, Stearil Metakrilat, Hidrojel.

Özet

Hidrojeller, genellikle büyük miktarda su tutabilen, üç boyutlu, su ile temasında çözünmeyen, çapraz bağlı polimer ağlardan oluşan yumuşak malzemeler olarak tanımlanmaktadır. Polimer hidrojel sistemleri günlük yaşamda ve endüstride önemli uygulamalarda kullanılmaktadır. pH, sıcaklık, iyonik kuvvet vb. dış etkilere duyarlı olan hidrojeller "Akıllı Hidrojeller" olarak adlandırılmakta ve biyomedikal, biyoteknoloji, kontrollü ilaç salımı, atık suların arıtılması gibi çeşitli alanların son yıllardaki araştırma konularının içinde oldukça geniş yer tutmaktadır. Boyar maddelerin atık sulardan uzaklaştırılması için çeşitli teknolojiler vardır. Ancak bu tekniklerin çoğu hem ekonomik maliyet hem de enerji tüketimi açısından yüksektir ve bu teknolojilerin bazıları kirletici ve toksik atıkları ortadan kaldırmamakta, ikincil kirliliğe neden olmaktadır. Alternatif olarak adsorpsiyon yüksek verimi, kolay kullanımı ve adsorbanların işlenecek madde ile düşük reaktivitesi nedeniyle en etkili yöntemlerden biri olarak kabul edilmektedir. Boya adsorbanı olarak genellikle geniş yüzey alanına sahip aktif karbon, zeolit, ve iyon değişim reçineleri kullanılmaktadır. Ancak bu malzemeler, adsorpsiyon verimliliklerinin düşük olması, maliyetlerinin yüksek olması ve çevre dostu olmamaları gibi dezavantajlara sahiptirler. Adsorbent olarak hidrojeller, tüm bu dezavantajların üstesinden gelebilmektedir.

Bu çalışmada, itakonik asidin N-hidroksimetil akrilamit, akrilamit ve stearil metakrilat ile yapılan hidrojellerinin sentezi, hidrojellerin şişme davranışı, şişme kapasitesi, şişmeye pH ve sıcaklığın etkisi incelenmiştir. Son olarak bu hidrojellerin atık sulardan metilen mavisinin uzaklaştırılmasındaki uygulamaları çalışılmıştır.

Referanslar

Aguado, J. Arsuaga, J.M. Arencibia, A. Lindo, M. Gascon, V. 2009. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater. 163: 213–221.

Chauhan, G.S. Chauhan, S. Chauhan, K. Sen, U. 2006. Synthesis and characterization of acrylamide and 2-hydroxylpropyl methacrylate hydrogels for specialty applications J. Appl. Polym. Sci. 99: 3040-3049.

Dan, S. Banivaheb, S. Hashemipour, H. Kalantari, M. 2020. Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel, Polym. Bull. 78 (4): 1887–1907.

Dragan, E.S. 2014. Design and applications of interpenetrating polymer network hydrogels. Chemical Engineering Journal, 243: 572–590.

El-Hamshary, H. 2007. Synthesis and water sorption studies of pH sensitive poly (acrylamide-co-itaconic acid) hydrogels. European Polymer Journal, 43: 4830–4838.

Estefania, O. Pizarro, G. Oyarzun, D.P. Martin-Trasanco, R. Sanchez, J.2020. Adsorption of methylene blue in aqueous solution using hydrogels based on 2-hydroxyethyl methacrylate copolymerized with itaconic acid or acrylic acid. Materials Today Communications 25: 1013.

Fang, J.Y., Chen, J.P., Leu, Y.L., Hu, J.W. 2008. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 68: 626–636.

Gonzalez-Munoz, M.J. Amparo Rodriguez, M. Luque, S. Ramon Alvarez, J. 2006. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination 200: 742–744.

Gupta, V.K. Ali, I. Saini, V.K. 2007. Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J. Colloid. Interface Sci. 315: 87–93.

Gupta, V.K. Ali, I. Saleh, T.A. Nayak, A. Agarwal, S. 2012. Chemical treatment technologies for waste-water recycling – an overview. RSC. Adv. 2: 6380–6388.

Gupta, V.K. Gupta, M. Sharma, S. 2001. Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminium industry waste. Water Res. 35: 1125–1134.

Hernandez-Martínez, A.R. Lujan-Montelongo, J.A. Silva-Cuevas, C. Mota-Morales, J.D. Cortez-Valadez, M. Cruz, M. Herrera-Ordonez, J. 2018. Swelling and methylene blue adsorption of poly(N,N-dimethylacrylamideco-2-hydroxyethyl methacrylate) hydrogel. Reactive and Functional Polymers 122: 75–84.

Hilmi, B. Hamid, Z.A. Akil, H.M. Yahaya, B.H. 2016. The characteristics of the smart polymeras temperature or pH-responsive hydrogel, Procedia Chem. 19: 406–409.

Kaur, S. Jindal, R. 2018. Synthesis of Interpenetrating network hydrogel from (Gum Copal alcohols-collagen)-co-poly(acrylamide) and acrylic acid: Isotherms and Kinetics study for removal of methylene blue dye from aqueous solution. Materials Chemistry and Physics 220: 75-86.

Kushwaha, A.K., Gupta, N., Chattopadhyaya, M.C. 2014. Removal of Cationic Methylene Blue and Malachite Green from Aqueous Solution by Waste Materials of Daucuscarota. J. Saudi Chem. Soc. 18: 200-207.

Kuzmenko, V., Hagg, D., Toriz, G., Gatenholm, P. 2014. In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydrate Polymers, 102: 862–868.

Ma, X., Li, Y., Wang, W., Ji, Q., Xia, Y. 2013. Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior. European Polymer Journal, 49: 389–396.

Maturana, H.A. Peric, I.M. Rivas, B.L. Pooley, S.A. 2011. Interaction of heavy metal ions with an ion exchange resin obtained from a natural polyelectrolyte. Polym. Bull. 67: 669–676.

Mazı H. & Sürmelihindi, B. 2021. Temperature and pH-sensitive Super absorbent Polymers based on Modified Maleic Anhydride, Journal Of Chemical Sciences 133(10): 1-14.

Mazı, H & Esen, Y. 2021. New Effective and Reusable Polymeric Heterogeneous Catalysts for Poly(urethane) Production. Catalysis Surveys From Asia, 2021, 25: 93–100.

Özdemir, Y. Mazı, H. 2014. pH and Thermo Sensitive Superabsorbent Poly(N-Hydroxymethylacrylamide-co-Itaconic Acid) Hydrogels. Synthesis, Characterization and Kinetic Studies. Journal of Macromolecular Science Part A. Pure And Applied Chemistry, 51(12): 983-989.

Patrickios, C.S., Georgiou, T.K. 2003. Covalent amphiphilic polymer networks. Curr. Opin. Colloid Interface Sci., 8: 76–85.

Poto, A.D., Sbarra, M.S., Provenza, G., Visai, L., Speziale, P. 2009. The effect of photodynamic treatment combined with antibiotic action or hostdefence mechanisms on Staphylococcus aureus biofilms. Biomaterials, 30: 3158–3166.

Qureshi, D. Nayak, S.K. Maji, S. Anis, A. Kim, D. Pal, K. 2019. Environment sensitive hydrogels for drug delivery applications. European Polymer Journal, 120 (109220): 1-16.

Ravikumar, L. Kalaivani, S.S. Murugesan, A. Vidhyadevi, T. Karthik, G. Kirupha, S.D. Sivanesan, S. 2011. Synthesis, characterization, and heavy metal ion adsorption studies of polyamides, polythioamides having pendent chlorobenzylidine rings. J. Appl. Polym. Sci. 122: 1634–1642.

Shafaei, F.Z. Ashtiani, T. 2007. Equilibrium studies of the sorption of Hg(II) ions onto chitosan. Chem. Eng. J. 133: 311–316.

Soniewska, A., Palys, B. 2014. Supramolecular polyaniline hydrogel as a support for urease. Electrochimica Acta, 126: 90–97.

Takei, T., Ikeda, K., Ijima, H., Kawakami K. 2011. Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochemistry, 46: 566–571.

Wang, Y. Xiong, Y. Wang, J. Zhang, X. 2017. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids and Surfaces A: Physicochem. Eng. Aspects 520: 903–913.

Yıldız, U. Kemik, O.F. Hazer, B. 2010. The removal of heavy metal ions from aqueous solutions by novel pH-sensitive hydrogels. J. Hazard. Mater. 183: 521–532.

Yu, L. Zou, R. Zhang, Z. Song, G. Chen, Z. Yang, J. Hu, J. 2011. A Zn2 GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water. Chem. Commun. 47: 10719–10721.

Zendehdel, M., Barati, A., Alikhani, H., Hekmat, A. 2010. Removal of methylene blue dye from wastewater by removal onto semi-inpenetrating polymer network hydrogels composed of acrylamide and acrylic acid copolymer and polyvinyl alcohol. Iran J. Environ Health Sci. Eng 7: 423-428.

Zhang, G. He, Z. Xu, W. 2012. A low-cost and high efficient zirconium-modified-Naattapulgite adsorbent for fluoride removal from aqueous solutions. Chem. Eng. J. 183: 315–324.

Zhang, Q., Su, K., Chan-Park, M.B., Wu, H., Wanga, D., Xua R. 2014. Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants. Acta Biomaterialia, 10: 1167–1176.

Zhang, Y.T., Zhi, T.T., Zhang, L., Huang, H. and Chen, H.L. 2009. Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer, 50: 5693–5700.

İndir

Yayınlanmış

2023-12-20

Nasıl Atıf Yapılır

Mazı, H. (2023). SYNTHESIS AND CHARACTERIZATION OF ITACONIC ACID BASED HYDROGELS. Journal on Mathematic, Engineering and Natural Sciences (EJONS), 7(4), 662–671. Erişim adresi: https://ejons.org/index.php/ejons/article/view/400