Atık Trigliseritlerin Katyonik Türevlerinin Sentezi, Karakterizasyonu ve Anyon Giderme Özelliklerinin Değerlendirilmesi

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.14327108

Anahtar Kelimeler:

Atık yemeklik yağlar, Trigliseritler, Bitkisel yağların katyonik türevleri, Anyon giderimi, Sürdürülebilir kalkınma

Özet

Atık yemeklik yağlar (AYY),insan sağlığı ve çevredeki birçok ekosistem üzerinde olumsuz bir etkiye sahiptir. Geleceğimizi güvence altına almak için, bu malzemeleri geri dönüştürmemiz veya onlaın güvenli bir şekilde elimine edilmesi esastır. Bu çalışma, bitkisel yağlardan üretilen trigliseritlerin katyonik türevlerini tartışır ve değerlendirir. Ayrıca, araştırma sentezlenen malzemelerin anyonları ortadan kaldırma potansiyelini araştırır. Üç parçalı bir işlem katyonik türevler üretir. İşlem, kullanılmış yemeklik yağın (WCO) epoksidasyonu ile başlar. İşlemin bir sonraki adımı epoksitlenmiş atık yemeklik yağı (EWO) ve monokloroasetik asidi (MCA) birleştirecektir. İşlemin son aşaması olan kuaternizasyon reaksiyonu, üçüncül aminleri kullanır. Trietilamin ve piridin, kuaternerizasyon prosedürü sırasında iki birincil bileşen olarak görev yaptı. Türevleri analiz etmek için sırasıyla FTIR ve 1H NMR spektroskopisi gibi teknikler kullanıldı. Her bir değiştirilmiş trigliseritte toplam üç kuaterner amin grubunun sentezlendiği tespit edildi. Bu bileşiklerin çok değerlikli anyonlarla birleşmesi çözünmeyen katılma ürünlerine dönüşmesi gözlenir. sonuçlanır. QT-EWO-MCA, bileşiğin tek bir gramını kullanarak 0,059 gram karbonat, 0,0947 gram sülfat ve 0,0947 gram monohidrojen fosfatı absorbe etme yeteneğine sahiptir.

Referanslar

Awogbemi, O., Von Kallon, D. V., Aigbodion, V. S., & Panda, S. (2021). Advances in biotechnological applications of waste cooking oil. Cleaner and Sustainable Chemical Engineering, 4, 100158.

Azzena, U., Montenero, A., & Carraro, M. (2023). Recovery, purification, analysis and chemical modification of a waste cooking oil. Waste and Biomass Valorization, 14, 145–157.

Cayli, G., & Kusefoglu, S. (2010). Polymerization of linseed oil with phenolic resins. Journal of Applied Polymer Science, 118(2), 849–856.

Chen, W., Wu, Z., Xie, Y., He, X., Su, Y., Qin, Y., Tang, D., & Oh, S. K. (2023). Fabrication of silane and nano-silica composite modified bio-based WPU and its interfacial bonding mechanism with cementitious materials. Construction and Building Materials, 371, 130819.

Chiplunkar, P. P., & Pratap, A. P. (2016). Utilization of sunflower acid oil for synthesis of alkyd resin. Progress in Organic Coatings, 93, 61–67.

Chu, J. H., Kang, J. K., Park, S. J., & Lee, C. G. (2020). Application of the anion-exchange resin as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment. Environmental Science and Pollution Research, 27, 41688–41701.

Cui, L., Puerto, M. L. J., Salinas, L., Biswal, S. L., & Hirasaki, G. J. (2014). Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine. Analytical Chemistry, 86(22), 11055–11061.

Çaylı, G., & Küsefoğlu, S. (2011). Polymerization of acrylated epoxidized soybean oil with phenol furfural resins via repeated forward and retro Diels–Alder reactions. Journal of Applied Polymer Science, 120, 1707–1712.

Dahdouh, A., Khay, I., & Le Brech, Y. (2023). Olive oil industry: A review of waste stream composition, environmental impacts, and energy valorization paths. Environmental Science and Pollution Research, 30, 45473–45497.

Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR determination of fatty acids in vegetable oils. Processes, 8, 410.

Gürbüz, D. (2022). Quaternarization and polymerization of 2-chloroethyl maleate derivative of epoxidized soybean oil. Turkish Journal of Chemistry, 46(6), 26.

Haghsheno, R., Mohebbi, A., Hashemipour, H., & Sarrafi, A. (2009). Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin. Journal of Hazardous Materials, 166(2-3), 961–966.

Isikci Koca, E., Bozdag, G., Cayli, G., Kazan, D., & Cakir Hatir, P. (2019). Thermoresponsive hydrogels based on renewable resources. Journal of Applied Polymer Science, 137, 48861.

Kahraman, C. (2016). Role of geography in environmental education. International Journal of Humanities Arts and Social Sciences, 2(4), 121–125.

Khan, N., & Srivastava, V. C. (2021). Quaternary ammonium salts-based deep eutectic solvents: Utilization in extractive desulfurization. Energy & Fuels, 35(15), 12734–12745.

Landi, F. F. A., Fabiani, C., Castellani, B., Cotana, F., & Pisello, A. L. (2022). Environmental assessment of four waste cooking oil valorization pathways. Waste Management, 138, 219–233.

Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., & others. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels: Current situation and global perspective. Energy & Environmental Science, 6(2), 426–464.

Lito, P. F., Aniceto, J. P. S., & Silva, C. M. (2012). Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption. Water, Air, & Soil Pollution, 223(9), 6133–6155.

Llorca, M., & Farré, M. (2023). Micromaterials and nanomaterials as potential emerging pollutants in the marine environment. In V. M. León & J. Bellas (Eds.), Contaminants of Emerging Concern in the Marine Environment (pp. 375–400). Elsevier.

Lorenz, C. D., Stevens, M. J., & Wool, R. P. (2004). Fracture behavior of triglyceride-based adhesives. Journal of Polymer Science Part B: Polymer Physics, 42(17), 3333–3343.

Maia, M. A., Dotto, G. L., Perez-Lopez, O. W., & Gutterres, M. (2020). Phosphate removal from industrial wastewaters using layered double hydroxides. Environmental Technology, 42(20), 3095–3105.

Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available technologies and materials for waste cooking oil recycling. Processes, 8(3), 366.

Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692–1704.

Menager, C., Guigo, N., Vincent, L., & Sbirrazzuoli, N. (2020). Polymerization kinetic pathways of epoxidized linseed oil with aliphatic bio-based dicarboxylic acids. Journal of Polymer Science, 58(12), 1717–1727.

Nag, R., Mary O'Rourke, S., & Cummins, E. (2022). Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s – A focus on Ireland. Science of the Total Environment, 802, 149839.

Nepomuceno, N. C., Barreto, V., & Wellen, R. M. R. (2024). Effect of dicarboxylic acids’ aliphatic chain on the curing of epoxidized soybean oil (ESO) resins. Journal of Polymers and the Environment, 32, 45–56.

Rajput, C. V., Sastry, N. V., & Chikhaliya, N. P. (2023). Vegetable oils-based precursors: Modifications and scope for futuristic bio-based polymeric materials. Journal of Polymer Research, 30, 159.

Savani, N. G., Naveen, T., & Dholakiya, B. Z. (2023). A review on the synthesis of maleic anhydride-based polyurethanes from renewable feedstock for different industrial applications. Journal of Polymer Research, 30, 175.

Şahin, Y. M., Çaylı, G., Çavuşoğlu, J., Tekay, E., & Şen, S. (2016). Cross-linkable epoxidized maleinated castor oil: A renewable resin alternative to unsaturated polyesters. International Journal of Polymer Science, 2016, 5781035.

Slabu, A. I., Banu, I., Pavel, O. D., Teodorescu, F., & Stan, R. (2023). Sustainable ring-opening reactions of epoxidized linseed oil in heterogeneous catalysis. Sustainability, 15, 4197.

Tran, T. N., Di Mauro, C., Graillot, A., & Mija, A. (2020). Chemical reactivity and the influence of initiators on the epoxidized vegetable oil/dicarboxylic acid system. Macromolecules, 53(7), 2526–2538.

Tsubouchi, M., Mitsushio, H., & Yamasaki, N. (1981). Determination of cationic surfactants by two-phase titration. Analytical Chemistry, 53(12), 1957–1959.

Uguz, G. (2023). Inhibitory effect of thyme oil as an antioxidant for waste cooking oil biodiesel crystallization. Energy & Environment, 34(1), 176–192.

Villada, Y., Inciarte, H., Gomez, C., Cardona, S., Orozco, L. M., Estenoz, D., & Rios, L. (2023). Alkyd-urethane resins based on castor oil: Synthesis, characterization and coating properties. Progress in Organic Coatings, 180, 107556.

Yang, D., Zhang, S., Sun, X. G., Jiang, D. E., & Dai, S. (2019). Deep eutectic solvents formed by quaternary ammonium salts and aprotic organic compound succinonitrile. Journal of Molecular Liquids, 274, 414–417.

Zeng, R. T., Wu, Y., Li, Y. D., Wang, M., & Zeng, J. B. (2017). Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polymer Testing, 57, 281–287.

Zeidan, H., & Marti, M. E. (2019). Separation of formic acid from aqueous solutions onto anion exchange resins: Equilibrium, kinetic, and thermodynamic data. Journal of Chemical & Engineering Data, 64(6), 2718–2727.

Zhao, F., Li, M., Zhao, X., Li, Z., Wang, Z. Y., & Xiang, J. L. (2023). Effects of silicone resins on copolymerization of acrylated epoxidized soybean oil. Polymer Engineering & Science, 63(4), 1323.

Zheng, X., Liu, Z., Fu, T., Easa, S., Liu, W., & Qiu, R. (2023). Performance enhancement of asphalt mixtures enabled by bamboo fibers and acrylated soybean oil. ACS Sustainable Chemistry & Engineering, 11(15), 5867–5875.

Zeng, R. T., Wu, Y., Li, Y. D., Wang, M., & Zeng, J. B. (2017). Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polymer Testing, 57, 281–287.

Yayınlanmış

2024-12-09

Nasıl Atıf Yapılır

CAYLI, G., KAHRAMAN, C. ., & GÜLER, M. (2024). Atık Trigliseritlerin Katyonik Türevlerinin Sentezi, Karakterizasyonu ve Anyon Giderme Özelliklerinin Değerlendirilmesi. Journal on Mathematic, Engineering and Natural Sciences (EJONS), 8(4), 504–515. https://doi.org/10.5281/zenodo.14327108

Sayı

Bölüm

Makaleler