DETERMINATION OF DOPAMINE WITH TWO-DIMENSIONAL MoS2 MODIFIED GLASSY CARBON ELECTRODE

Authors

  • GÜLDEN ASAN HİTİT ÜNİVERSİTESİ

DOI:

https://doi.org/10.5281/zenodo.8198875

Keywords:

Two-Dimensional, Molibdendisülfür, Dopamine, Electrochemical Determination

Abstract

ABSTRACT

Dopamine (DA) is a hormone secreted in the brain and it provides communication between nerve cells and ensures that body movements are carried out in a balanced way. Since dopamine is an electroactive compound, its determination by electrochemical techniques can be done with high sensitivity, easy processing and low cost. Molybdenum Sulfide (MoS2) is one of the important two-dimensional (2D) transition metal dialcogenes from graphene analogues. Transition metal dicalcogenes (TMD) are denoted by the general formula MX2 (M = Mo, W, V, Nb, Ta, Ti, Zr, Hf and X = S, Se, Te). With their unique electronic, optical, thermal, mechanical and electrical properties and structures similar to graphene, they have found a wide range of applications by forming an interesting group of materials. In recent years, the most studied of the transition metal dicalcogenes are MoS2 and WS2. In the study, glassy carbon electrode (GCE) was modified with MoS2. In experimental studies, two different methods were used for the preparation of modified electrodes. The first of these methods is the drip coating (DC) method. The electrode prepared by modifying the GCE with this method is called MoS2 (1)/GCE electrode. The second method applied is the electrochemical coating method. The electrode prepared by modifying the GCE with this method is called MoS2(2)/GCE electrode. In this study, electrode modification was made for dopamine and dopamine was detected electrochemically with these two electrodes. In order to see the efficiency in DA determination, DA determination in a commercial drug called Dopmin was successfully performed with MoS2(1)/GCE and MoS2(2)/GCE with a relative error of 4.9 % and -1.0 %, respectively.

References

REFERENCES

Asan, G. (2015). MoS2 İLE MODİFİYE EDİLMİŞ CAMSI KARBON ELEKTROT KULLANILARAK ASKORBİK ASİT, DOPAMİN VE ÜRİK ASİT ‘ İN ELEKTROKİMYASAL YÖNTEMLERLE TAYİNİ. Gazi Üniversitesi. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

ASAN, G., & Çelikkan, H. (2017). ASKORBİK ASİTİN MoS2 ESASLI ELEKTROTLA ELEKTROKİMYASAL TAYİNİ. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 617–625. Retrieved from https://doi.org/10.17341/gazimmfd.337608

Balamurugan, J., Senthil Kumar, S. M., Thangamuthu, R., & Pandurangan, A. (2013). Facile and controlled growth of SWCNT on well-dispersed Ni-SBA-15 for an efficient electro-catalytic oxidation of ascorbic acid, dopamine and uric acid. Journal of Molecular Catalysis A: Chemical, 372, 13–22. Retrieved from https://doi.org/10.1016/j.molcata.2013.02.001

Baranyi, M., Milusheva, E., Vizi, E. S., & Sperlágh, B. (2006). Chromatographic analysis of dopamine metabolism in a Parkinsonian model. Journal of Chromatography A, 1120(1–2), 13–20. Retrieved from https://doi.org/10.1016/j.chroma.2006.03.018

Cao, X., Luo, L., Ding, Y., Zou, X., & Bian, R. (2008). Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode. Sensors and Actuators, B: Chemical, 129(2), 941–946. Retrieved from https://doi.org/10.1016/j.snb.2007.10.008

De Benedetto, G. E., Fico, D., Pennetta, A., Malitesta, C., Nicolardi, G., Lofrumento, D. D., … La Pesa, V. (2014). A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266–270. Retrieved from https://doi.org/10.1016/j.jpba.2014.05.039

Duan, H., Li, L., Wang, X., Wang, Y., Li, J., & Luo, C. (2015). A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 139, 374–379. Retrieved from https://doi.org/10.1016/j.saa.2014.12.051

Güçlü, K., Sözgen, K., Tütem, E., Özyürek, M., & Apak, R. (2005). Spectrophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and pharmaceuticals. Talanta, 65(5), 1226–1232. Retrieved from https://doi.org/10.1016/j.talanta.2004.08.048

Huang, K. J., Wang, L., Liu, Y. J., Gan, T., Liu, Y. M., Wang, L. L., & Fan, Y. (2013). Synthesis and electrochemical performances of Layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochimica Acta, 107, 379–387. Retrieved from https://doi.org/10.1016/j.electacta.2013.06.060

Kanďár, R., Drábková, P., & Hampl, R. (2011). The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(26), 2834–2839. Retrieved from https://doi.org/10.1016/j.jchromb.2011.08.007

Li, X., & Franke, A. A. (2009). Fast HPLC-ECD analysis of ascorbic acid, dehydroascorbic acid and uric acid. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877(10), 853–856. Retrieved from https://doi.org/10.1016/j.jchromb.2009.02.008

Mamiński, M., Olejniczak, M., Chudy, M., Dybko, A., & Brzózka, Z. (2005). Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Analytica Chimica Acta, 540(1), 153–157. Retrieved from https://doi.org/10.1016/j.aca.2004.09.011

Moghadam, M. R., Dadfarnia, S., Shabani, A. M. H., & Shahbazikhah, P. (2011). Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Analytical Biochemistry, 410(2), 289–295. Retrieved from https://doi.org/10.1016/j.ab.2010.11.007

Nevado, J. J. B., Gallego, J. M. L., & Laguna, P. B. (1996). Flow-injection spectrophotometric determination of adrenaline and dopamine with sodium hydroxide. Journal of Pharmaceutical and Biomedical Analysis, 14(5), 571–577. Retrieved from https://doi.org/10.1016/0731-7085(95)01663-5

Oko, D. N., Garbarino, S., Zhang, J., Xu, Z., Chaker, M., Ma, D., … Tavares, A. C. (2015). Dopamine and ascorbic acid electro-oxidation on Au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water. Electrochimica Acta, 159, 174–183. Retrieved from https://doi.org/10.1016/j.electacta.2015.01.192

Ping, J., Wu, J., Wang, Y., & Ying, Y. (2012). Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosensors and Bioelectronics, 34(1), 70–76. Retrieved from https://doi.org/10.1016/j.bios.2012.01.016

Virag, L., & Whittington, R. A. (2002). Highly sensitive chromatographic assay for dopamine determination during in vivo cerebral microdialysis in the rat. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 772(2), 267–272. Retrieved from https://doi.org/10.1016/S1570-0232(02)00106-X

Wang, C., Yuan, R., Chai, Y., Chen, S., Hu, F., & Zhang, M. (2012). Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Analytica Chimica Acta, 741, 15–20. Retrieved from https://doi.org/10.1016/j.aca.2012.06.045

Wu, D., Li, Y., Zhang, Y., Wang, P., Wei, Q., & Du, B. (2014). Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@Graphene sheets. Electrochimica Acta, 116, 244–249. Retrieved from https://doi.org/10.1016/j.electacta.2013.11.033

Zhao, H., Zhang, Y., & Yuan, Z. (2001). Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Analytica Chimica Acta, 441(1), 117–122. Retrieved from https://doi.org/10.1016/S0003-2670(01)01086-8

Zhou, K., Liu, J., Wen, P., Hu, Y., & Gui, Z. (2014). A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS 2 composites. Applied Surface Science, 316(1), 237–244. Retrieved from https://doi.org/10.1016/j.apsusc.2014.07.136

Zhu, M., Huang, X., Li, J., & Shen, H. (1997). Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa. Analytica Chimica Acta, 357(3), 261–267. Retrieved from https://doi.org/10.1016/S0003-2670(97)00561-8

Zhu, Q., Chen, Y., Wang, W., Zhang, H., Ren, C., Chen, H., & Chen, X. (2015). A sensitive biosensor for dopamine determination based on the unique catalytic chemiluminescence of metal-organic framework HKUST-1. Sensors and Actuators, B: Chemical, 210, 500–507. Retrieved from https://doi.org/10.1016/j.snb.2015.01.012

Published

2023-03-20

How to Cite

ASAN, G. (2023). DETERMINATION OF DOPAMINE WITH TWO-DIMENSIONAL MoS2 MODIFIED GLASSY CARBON ELECTRODE. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 7(1), 71–86. https://doi.org/10.5281/zenodo.8198875