Hirshfeld Surface Analysis and Intermolecular Interaction Profiling of Cyproheptadine Hydrochloride Sesquihydrate
DOI:
https://doi.org/10.5281/zenodo.17998151Anahtar Kelimeler:
Cyproheptadine hydrochloride, Hirshfeld surface analysis, crystal structure, Van der Waals interactionsÖzet
Cyproheptadine is a serotonin and histamine antagonist exhibiting notable anticholinergic and sedative properties. In the present study, Hirshfeld surface (HS) analysis and two-dimensional (2D) fingerprint plots were utilized to gain a deeper understanding of the intermolecular interactions governing the stability of the cyproheptadine hydrochloride sesquihydrate crystal. The HS analysis, performed using CrystalExplorer17.5, enabled visualization of interaction patterns within the crystal lattice through electron density partitioning, while the 2D fingerprint plots provided a quantitative assessment of atom–atom contact contributions. The findings demonstrate that hydrogen bonding interactions predominate and play a crucial role in maintaining the structural integrity and stability of the crystal, offering valuable insights for crystal engineering and pharmaceutical formulation studies.
Referanslar
Baylan, D., Sağdınç, S.G., 2019. Hirshfeld surface analysis of diclofenac acid. AIP Conference Proceedings, 2178: 030029.
Birknes, B., 1977. The structure of an antihistamine: cyproheptadine hydrochloride sesquihydrate, Acta Crystallographica, B33: 687-691.
Feás, X., Ye, L., Regal, P., Fente, C.A., Hosseini, S.V., Cepeda, A., 2009a. Application of dummy molecularly imprinted solid-phase extraction in the analysis of cyproheptadine in bovine urine. Journal of Separation Science, 32: 1740-1747.
Feás, X., Seijas, J.A., Vázquez-Tato, M.P., Regal, P., Cepeda, A., Fente, C., 2009b. Syntheses of molecularly imprinted polymers: Molecular recognition of cyproheptadine using original print molecules and azatadine as dummy templates. Analytica Chimica Acta, 631: 237-244.
Feás, X., Fente, C.A., Hosseini, S.V., Seijas, J.A., Vázquez, B.I., Franco, C.M., Cepeda, A., 2009c. Use of acrylic acid in the synthesis of molecularly imprinted polymers for the analysis of cyproheptadine. Materials Science and Engineering C, 29: 398-404.
Hirshfeld, F.L., 1977. Bonded-atom fragments for describing molecular charge densities. Theoretical Chemistry Accounts, 44: 129-138.
McKinnon, J.J., Spackman, M.A., Mitchell, A.S., 2004. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica, B60: 627-668.
Moser, P., Sallman, A., Weisemberg, I., 1990. Synthesis and quantitative structure-activity relationships of diclofenac analogs. Journal of Medicinal Chemistry, 33: 2358-2368.
Sağdınc, S.G., Erdaş, D., Gündüz, I., Şahintürk, A.E., 2015. FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 134: 350–360.
Spackman, M.A., McKinnon, J.J., 2002. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4: 378-392.
Sweetman, S.C., 2002. Martindale-The Complete Drug Reference (33rd Ed.). Pharmaceutical Press, London.
Yamamoto, Y., Niwa, S., Iwayama, S., Koganei, H., Fujita, S., Takeda, T., Kito, M., Ono, Y., Saitou, Y., Takahara, A., Iwata, S., Yamamoto H., ShojiBioorg, M., 2006. Discovery, structure activity relationship study, and oral analgesic efficacy of cyproheptadine derivatives possessing N-type calcium channel inhibitory activity. Medical Chemistry, 14: 5333-5339.
Yoshida, T., Mashima, A., Sasahara, K., Chuman, H., 2014. A simple and efficient dispersion correction to the Hartree–Fock theory. Bioorganic & Medicinal Chemistry Letters, 24(4): 1037-1042.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2025 EJONS Uluslararası Matematik, Mühendislik ve Doğa Bilimleri Dergisi

Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.