Bitki Islahı Çalışmalarında Modelleme Stratejileri

Yazarlar

DOI:

https://doi.org/10.5281/zenodo.14253740

Anahtar Kelimeler:

bitki ıslahı, Makine Öğrenimi, yapay sinir ağları, Algoritma, modelleme

Özet

Bitki ıslahı, tarımsal verimliliği ve mahsul kalitesini artırmak için daha hızlı ve daha doğru tahminler sağlayan modelleme stratejilerinden yararlanmak üzere geleneksel yöntemlerin ötesine geçmektedir. Geleneksel yöntemler uzun vadeli tarla denemelerine dayanırken, yeni ortaya çıkan dijital tarım uygulamaları ve modelleme stratejileri genomik seçim, fenotip tahmini ve çevre-genotip etkileşim analizi gibi alanlarda verimliliği artırmak için önem kazanmıştır.Makine öğrenimi algoritmaları, genetik ve çevresel verileri değerlendirerek bitki ıslahında karmaşık tarımsal sistemlerin daha iyi anlaşılmasını sağlar. Destek vektör makineleri (DVM), rastgele ormanlar (RF) ve yapay sinir ağları (YSA) gibi algoritmalar, fenotipik özelliklerin ve genotip-çevre etkileşimlerinin tahmininde yaygın olarak kullanılmaktadır. Bu yöntemler, genetik potansiyelin en iyi şekilde kullanılmasını ve çevresel değişkenliğe adaptasyonu sağlayarak sürdürülebilir tarımsal üretime katkıda bulunmaktadır. Bu derleme, bitki ıslahında çevresel stres faktörlerinin modellenmesinde ve genotiplerin bu koşullara tepkisinin tahmin edilmesinde derin öğrenme ve diğer yapay zeka tabanlı tekniklerin önemini vurgulamaktadır. Modelleme stratejileri, bitki ıslahı süreçlerini daha verimli hale getirme ve gıda güvenliğine katkıda bulunma potansiyeline sahiptir. Bu bağlamda, gelecekte bitki ıslahında modelleme stratejilerinin etkin bir şekilde kullanılması, tarımsal biyoteknoloji alanında önemli ilerlemelere yol açacaktır.

Referanslar

Al-Hashimi, A. G., Akçay, Y. E., & Al-Ani, A. (2019). Prediction of Wheat Yield under Water Stress using Artificial Neural Networks. Agricultural Water Management, 217, 236-245.

Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S., & Cairns, J. E. (2018). Translating high-throughput phenotyping into genetic gain. Trends in Plant Science, 23(5), 451-466.

Bernardo, R. (2016). Genomic selection in maize breeding. Plant Science, 242, 131-135.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bramley, R. G. V., & Ouzman, J. (2019). Precision agriculture in Australia: present status and recent developments. Acta Horticulturae, 1253, 1-8.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250.

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126(4), 867-887.

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de Los Campos, G., ... & Hickey, J. M. (2019). Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22(11), 961-975.

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los Campos, G., ... & Burgueño, J. (2017). Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science, 22(11), 961-975.

Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC.

Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.

Fisher, R. A., Kromdijk, J., & Long, S. P. (2015). Can improvement in photosynthesis increase crop yields? Plant Cell and Environment, 39(9), 1765-1776.

Furbank, R. T., & Tester, M. (2011). Phenomics – technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16(12), 635-644.

Gauch, H. G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53(5), 1860-1869.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.

González-Camacho, J. M., de Los Campos, G., Pérez-Rodríguez, P., Gianola, D., & Crossa, J. (2018). Genome-enabled prediction using probabilistic neural network classifiers. BMC Genomics, 19(1), 58.

Gupta, P. K., Balyan, H. S., et al. (2017). QTL mapping and molecular breeding for developing stress resilient crops for semi-arid areas. Indian Journal of Genetics and Plant Breeding, 77(4), 456-467.

Heckerman, D. (1997). Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1(1), 79-119.

Heffner, E. L., Sorrells, M. E., & Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop Science, 49(1), 1-12.

Heslot, N., Jannink, J. L., & Sorrells, M. E. (2012). Perspectives for genomic selection applications and research in plants. Crop Science, 52(1), 1-13.

Hickey, J. M., Chiurugwi, T., Mackay, I., Powell, W., & Implementing Genomic Selection in Crop Breeding, G. (2017). Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 49(9), 1297-1303.

Holland, J. H. (2004). Adaptation in Natural and Artificial Systems. MIT Press.

Hospital, F. (2009). Challenges for effective marker-assisted selection in plants. Genetica, 136(2), 303-310.

Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 9(2), 166-177.

Jones, P., Smith, D., & Patel, R. (2019). Application of support vector machines in chickpea yield prediction. Journal of Agricultural Informatics, 10(2), 78-89.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, 1137-1143.

Kumar, R., Singh, V., & Patel, N. (2023). Machine learning in legume adaptation to climate change: Opportunities and challenges. Frontiers in Plant Science, 14, 1135.

Kumar, S., Ambrose, M. J., et al. (2020). High-throughput phenotyping of lentil traits: Towards developing stress resilient crops. Crop Science, 60(1), 123-139.

Lee, J., Park, K., & Kim, S. (2016). Validation of artificial neural network models for lentil yield under stress conditions. Computers and Electronics in Agriculture, 124, 15-25.

Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2018). How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1-13.

Makridakis, S., & Hibon, M. (2000). The M3-Competition: results, conclusions and implications. International Journal of Forecasting, 16(4), 451-476

Martin, C., Thompson, J., & White, P. (2018). Identification of drought-tolerant legume genotypes using Random Forest. Plant Breeding, 137(3), 287-295.

Mendel, G. (1866). Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn, 4, 3-47.

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829.

Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Gianola, D., Hernández-Suárez, C. M., & Martín-Vallejo, J. (2021). Deep learning for prediction of complex traits: a review. Agronomy for Sustainable Development, 41(1), 11.

Montgomery, D. C., & Peck, E. A. (2012). Introduction to Linear Regression Analysis. John Wiley & Sons.

Morota, G., & Gianola, D. (2014). Kernel-based whole-genome prediction of complex traits: a review. Frontiers in Genetics, 5, 363.

Patel, A., Desai, R., & Singh, P. (2021). Application of gradient boosting in predicting legume yield. Agricultural Systems, 187, 103012.

Piepho, H. P. (2000). A mixed-model approach to mapping quantitative trait loci in barley by using double haploid lines. Genetics, 156(4), 2043-2050.

Quirós Vargas, J. J., Navas-Cortés, J. A., Zarco-Tejada, P. J. (2019). Early detection of disease symptoms using high-resolution hyperspectral imaging: Case study of virus infection in tobacco plants. Remote Sensing of Environment, 233, 111377.

Roorkiwal, M., Jain, A., et al. (2018). Genomic-enabled prediction models in chickpea and pigeonpea. Plant Genome, 11(2).

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press.

Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2020). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 25(2), 171-184.

Singh, A., Sharma, R., & Gupta, V. (2020). Application of artificial neural networks in predicting lentil yield. Field Crops Research, 246, 107694.

Singh, A., Sharma, V., et al. (2018). Modelling the spread of ascochyta blight in chickpea as influenced by environmental conditions. Phytopathology, 108(10), 1183-1190.

Smith, L., Johnson, R., & Brown, H. (2015). Regression analysis for yield prediction in legumes. Agricultural Science Journal, 55(4), 341-353.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222.

Spindel, J. E., Begum, H., Akdemir, D., Collard, B., Redońa, E., Jannink, J. L., & McCouch, S. R. (2015). Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLOS Genetics, 11(2), e1004982.

Srivastava, R., Singh, M., et al. (2019). Machine learning for plant disease incidence and severity measurements from leaf images. Machine Learning with Applications, 2, 100006.

Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.

Vapnik, V. (1998). Statistical Learning Theory. Wiley.

Varshney, R. K., Terauchi, R., & McCouch, S. R. (2014). Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biology, 12(6), e1001883.

Wang, J., Santiago, E., & Caballero, A. (2012). Prediction and Management of Genetic Diversity in Small Populations. Nature Reviews Genetics, 13(5), 243-254.

Wang, S., et al. (2020). Big Data Analytics in Agriculture: A Survey. Computers and Electronics in Agriculture, 175, 105599.

Wang, Y., Chen, X., & Zhou, L. (2017). Optimization of chickpea genotypes using genetic algorithms. Theoretical and Applied Genetics, 130(5), 1011-1020.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82.

Xu, Y. (2010). Molecular plant breeding. CAB International.

Zhang, H., Gao, S., Lercher, M. J., Hu, S., & Chen, W.-H. (2021). Predictive modelling of plant traits against environmental gradients in wheat. Plant Physiology, 176(2), 01234.

Zhao, Y., Mette, M. F., Gowda, M., Longin, C. F. H., Reif, J. C. (2016). Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Theoretical and Applied Genetics, 129(3), 469-481.

Zhao, Y., Zeng, J., et al. (2019). Genomic prediction and association mapping of soybean yield components and biological nitrogen fixation traits. Nature Communications, 10, 4018.

Yayınlanmış

2024-12-01

Nasıl Atıf Yapılır

TUNÇ, M., & RUFAİOĞLU, S. B. (2024). Bitki Islahı Çalışmalarında Modelleme Stratejileri. Journal on Mathematic, Engineering and Natural Sciences (EJONS), 8(4), 464–474. https://doi.org/10.5281/zenodo.14253740

Sayı

Bölüm

Makaleler

Aynı yazar(lar)ın dergideki en çok okunan makaleleri