A Computational Approach to Measuring Thermal Demand in Jordanian Greenhouses

Ürdün Seralarında Termal Talebi Ölçmeye Yönelik Hesaplamalı Bir Yaklaşım

Authors

DOI:

https://doi.org/10.5281/zenodo.14228036

Keywords:

Greenhouse, Jordan, heating, calculation

Abstract

This research provides an in-depth analysis of the thermal equilibrium in a greenhouse, taking into account variables such as the greenhouse’s geographical position, the variety of crops grown, the type of covering material, heating techniques, and the overall size of the structure. A computerized tool has been crafted to aid farmers, agricultural engineers, and those interested in greenhouse management, offering a significant resource for optimizing greenhouse operations.

In Jordan, energy consumption in plastic greenhouses is of utmost importance for agriculture, especially in regions with harsh weather conditions. Effective management requires an understanding of climatic factors to improve heating systems, which are costly but vital for crop quality and quantity. This study developed a computer program to assess heating needs and revealed that Jordan requires 1.97 megawatts for agricultural greenhouses. The highest consumption was in the Al-Aghwar at 1.00 megawatt. Looking at areas like Shooneh Janobiyeh and Deir Alla, we find consumption levels of 0.59 and 0.35 megawatts, respectively. Optimal heating control led to energy consumption of 1.77, 0.971, 0.61, and 0.221 megawatts for eggplant, tomatoes, peppers, and cucumbers, respectively, contributing to food security and reducing the need for imports. Despite the very successful results of this research, we recommend expanding it to cover the entire territory of the Hashemite Kingdom of Jordan.

References

Abdelaty, E., 2015. GIS-mapping aridity and rainfall water deficit of Egypt. J. Agric. & Env. Sci. Dam. Univ., Egypt 14, 17-40.

Al Miaari, A., El Khatib, A., Ali, H.M., 2023. Design and thermal performance of an innovative greenhouse. Sustainable Energy Technologies and Assessments 57, 103285.

Ali, H.B., Bournet, P.-E., Cannavo, P., Chantoiseau, E., 2019. Using CFD to improve the irrigation strategy for growing ornamental plants inside a greenhouse. Biosystems engineering 186, 130-145.

Attar, I., Farhat, A., 2015. Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy 119, 212-224. https://doi.org/10.1016/j.solener.2015.06.040.

Attar, I., Naili, N., Khalifa, N., Hazami, M., Farhat, A., 2013. Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management 70, 163-173. https://doi.org/10.1016/j.enconman.2013.02.017.

Baeza Romero, E., Van Os, E., van der Salm, C., Tsafaras, I., Blok, C., 2019. Exploring the boundaries of the passive greenhouse in Jordan: a modelling approach, XI International Symposium on Protected Cultivation in Mild Winter Climates and I International Symposium on Nettings and 1268, pp. 43-50.

Belanger, R.R., Bowen, P.A., Ehret, D.L., Menzies, J.G., 1995. Soluble Silicon - Its Role in Crop and Disease Management of Greenhouse Crops. Plant Disease 79, 329-336. https://doi.org/Doi 10.1094/Pd-79-0329.

Beyhan, B., Paksoy, H., Dasgan, Y., 2013. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management 74, 446-453. https://doi.org/10.1016/j.enconman.2013.06.047.

Brouche, M., Lahoud, C., Lahoud, M.F., Lahoud, C., 2020. Solar drying simulation of different products: Lebanese case. Energy Reports 6, 548-564. https://doi.org/10.1016/j.egyr.2020.09.032.

Castilla, N., Hernandez, J., 2006. Greenhouse technological packages for high-quality crop production, XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 761, pp. 285-297.

Chai, L.L., Ma, C.W., Ni, J.Q., 2012. Performance evaluation of ground source heat pump system for greenhouse heating in northern China. Biosystems Engineering 111, 107-117. https://doi.org/10.1016/j.biosystemseng.2011.11.002.

Chedid, R., Chaaban, F., Salameh, S., 2001. Policy analysis of greenhouse gas emissions: the case of the Lebanese electricity sector. Energy Conversion and Management 42, 373-392. https://doi.org/Doi 10.1016/S0196-8904(00)00060-1.

Chou, S., Chua, K., Ho, J., Ooi, C., 2004a. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied energy 77, 355-373.

Chou, S.K., Chua, K.J., Ho, J.C., Ooi, C.L., 2004b. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied Energy 77, 355-373. https://doi.org/10.1016/S0306-2619(03)00157-0.

Darwish, M.R., El-Awar, F.A., Sharara, M., Hamdar, B., 1999. Economic-environmental approach for optimum wastewater utilization in irrigation: A case study in Lebanon. Applied Engineering in Agriculture 15, 41-48.

Dimitropoulou, A.M.N., Maroulis, V.Z., Giannini, E.N., 2023. A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe. Energies 16, 6788. https://doi.org/ARTN 6788 10.3390/en16196788.

El-Fadel, M., Bou-Zeid, E., 1999. Transportation GHG emissions in developing countries. The case of Lebanon. Transportation Research Part D-Transport and Environment 4, 251-264. https://doi.org/Doi 10.1016/S1361-9209(99)00008-5.

Gajewski, M., Kowalczyk, K., Bajer, M., Radzanowska, J., 2009. Quality of Eggplant Fruits in Relation to Growing Medium Used in Greenhouse Cultivation and to a Cultivar. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37, 229-234.

Ghaly, N., Gürdil, G.A., Duran, H., Demirel, B., 2024. Calculating Greenhouse Heating Capacities under Egypt's Climate Conditions: Using a Computational Program. Tarım Makinaları Bilimi Dergisi 20, 25-40.

Habib, W., Saab, C., Malek, R., Kattoura, L., Rotolo, C., Gerges, E., Baroudy, F., Pollastro, S., Faretra, F., Angelini, R.M.D., 2020. Resistance profiles of populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology 69, 1453-1468 https://doi.org/10.1111/ppa.13228.

Hainoun, A., Omar, H., Almoustafa, A., Seif Al-din, M.K., 2010. Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection.

Hossard, L., Philibert, A., Bertrand, M., Colnenne-David, C., Debaeke, P., Munier-Jolain, N., Jeuffroy, M.H., Richard, G., Makowski, D., 2014. Effects of halving pesticide use on wheat production. Sci Rep 4, 4405. https://doi.org/10.1038/srep04405.

Khatib, A., Sizov, A.P., 2022. Mapping the spatial distribution and potential expansion of agricultural plastic greenhouses in Tartus, Syria using GIS and remote sensing techniques. Geocarto International, 1-24. https://doi.org/10.1080/10106049.2022.2134465.

Kläring, H.-P., Klopotek, Y., Krumbein, A., Schwarz, D., 2015. The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology 214, 178-188.

Mansour, A., Al-Banna, L., Salem, N., Alsmairat, N., 2014. Disease management of organic tomato under greenhouse conditions in the Jordan Valley. Crop Protection 60, 48-55. https://doi.org/10.1016/j.cropro.2014.03.001.

Morshed, W., Abbas, L., Nazha, H., 2022. Heating performance of the PVC earthair tubular heat exchanger applied to a greenhouse in the coastal area of west Syria: An experimental study. Thermal Science and Engineering Progress 27, 101000.

Perry, K.B., Wehner, T.C., Johnson, G.L., 1986. Comparison of 14 Methods to Determine Heat Unit Requirements for Cucumber Harvest. Hortscience 21, 419-423.

Ponce, P., Molina, A., Cepeda, P., Lugo, E., MacCleery, B., 2014. Greenhouse design and control. CRC press Boca Raton, FL, USA:.

Rabbi, B., Chen, Z.H., Sethuvenkatraman, S., 2019. Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies 12, 2737. https://doi.org/ARTN 2737 10.3390/en12142737.

Rana, M., Vilas, C.A., 2017. Broad Bean, Vegetable Crop Science. CRC Press, pp. 683-692.

Rouphael, Y., Colla, G., Battistelli, A., Moscatello, S., Proietti, S., 2004. Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. Journal of Horticultural Science & Biotechnology 79, 423-430. https://doi.org/Doi 10.1080/14620316.2004.11511784.

Sarraf, S., 2004. Irrigation management and maintenance in greenhouse crops in Lebanon. Integrated production and protection in greenhouse vegetable crops. Technical Booklet. FAO, Rome, Italy, 83-93.

Shqiarat, M., 2019. History and Archaeology of Water Management in Jordan Through Ages. Scientific Culture 5.

Tazawa, S., 1999. Effects of various radiant sources on plant growth, part 1. Jarq-Japan Agricultural Research Quarterly 33, 163-176.

Van der Salm, C., Katzin, D., van Os, E., Raaphorst, M., 2023. Design of a greenhouse for peri-urban horticulture in Algeria. Wageningen University & Research, BU Greenhouse Horticulture.

Van Os, E., Baeza Romero, J., van der Salm, C., Jomaa, I., Tsafaras, I., El Skaf, S., El Halabi, D., El Rifai, L., 2019. Application of the adaptive greenhouse concept in Lebanon, XI International Symposium on Protected Cultivation in Mild Winter Climates and I International Symposium on Nettings and 1268, pp. 35-42.

Yavuzcan, G., 1995. İçsel Tarım Mekanizasyonu. Ankara Üniversitesi Ziraat Fakültesi Yayınları. Yayın No: 1416. Ankara, Türkiye

Downloads

Published

2024-12-01

How to Cite

GHANEM, L., LÜLE, F., & GÜRDİL, G. A. K. . (2024). A Computational Approach to Measuring Thermal Demand in Jordanian Greenhouses: Ürdün Seralarında Termal Talebi Ölçmeye Yönelik Hesaplamalı Bir Yaklaşım. EJONS INTERNATIONAL JOURNAL, 8(4), 426–437. https://doi.org/10.5281/zenodo.14228036

Issue

Section

Articles