Effects of Peganum harmala L. Plant Extract on the Development of Wheat (Triticum vulgare L.) and Purslane (Portulaca oleracea L.) Plants

Authors

  • murat kara Yüzüncü yıl üniversitesi Gevaş MYO
  • Peyami BATTAL

DOI:

https://doi.org/10.5281/zenodo.10488227

Abstract

The negative effects of chemicals containing substances use in weed control in agricultural production are increasing day by day. For this reason, it is important to use environmentally friendly substances of plant origin instead of chemicals that have negative effects on the environment and living things in weed control. The study was carried out at Van Yüzüncü Yıl University, Faculty of Arts and Sciences. As an application, 2%, 4% and 8% extracts of the plant with known allelopathic effect (Peganum harmala L.) were determined. Palandöken 97 wheat (Triticum vulgare L.) variety and BT Yeşil kulak  purslane (Portulaca oleracea L.) variety were used as plant material. The study was carried out according to randomized plots experimental design with 3 replications. At the end of the study, some morphological, physiological and biochemical changes were examined in the plants. As a result, Peganum harmala L. plant extract inhibited root and stem growth in the target plants. It caused an increase in chlorophyll and carotenoid amounts and a decrease in sugar levels. The results revealed that P. harmala L. leaf is an important source of allelopathic potential on plants and weeds and can be used as a valuable natural herbicide for the sustainability of crop production by controlling weeds in the future.

References

Arıkan N, Elibüyük İÖ 2015. Yabancı otlarla mücadelede allelopatinin kullanımı. Türk Bilimsel Derlemeler Dergisi, 8(1): 46-50.

Arnon DI, Whatley F R, 1949. Is Chloride a Coenzyme of Photosynthesis?. Science, 110(2865): 554-556.

Aslan, M. (2006). Ürünlerin birbirine olan allelopatik etkileri ve ekim nöbeti sistemlerinin oluşturulmasında allelopatinin önemi. Allelopati Çalıştayı Bildiri Kitabı ISBN, 975-407.

Ballı, Z. D., Tülay, E. Z. E. R., Ünal, B. T., & İşlek, C. (2018). Effects of Plagiomnium undulatum (Bryophyta) Extracts on Seedling Growth of Sinapis arvensis. Anatolian Bryology, 4(2), 84-91. https://doi.org/10.26672/anatolianbryology.467328

Bhadoria PBS, 2011. Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture, 1(1): 7-20.

Chon, S. U., & Nelson, C. J. (2010). Allelopathy in Compositae plants. A review. Agronomy for Sustainable Development, 30(2), 349-358. https://doi.org/10.1051/agro/2009027

Dai, L., Wu, L., Zhou, X., Jian, Z., Meng, L., & Xu, G. (2022). Effects of water extracts of Flaveria bidentis on the seed germination and seedling growth of three plants. Scientific Reports, 12(1), 17700. https://doi.org/10.1038/s41598-022-22527-z

Dogba, M., Kougbo, M. D., Konan, A. S., & Malan, D. F. (2023). Allelopathic effects of aqueous leaf extracts of five invasive species in Côte d'Ivoire on maize (Zea mays) and rice (Oryza sativa). https://doi.org/10.56781/ijsrr.2023.2.1.0034

Einhellig FA, 1996. Interactions Involving Allelopathy in Cropping Systems. Agronomy Jornal, 88(6): 886-893. https://doi.org/10.2134/agronj1996.00021962003600060007x

El Gendy, M. A., & El-Kadi, A. O. (2009). Peganum harmala L. differentially modulates cytochrome P450 gene expression in human hepatoma HepG2 cells. Drug Metabolism Letters, 3(4), 212-216. https://doi.org/10.2174/187231209790218163

Farooq, M., Hussain, T., Wakeel, A., & Cheema, Z. A. (2014). Differential response of maize and mungbean to tobacco allelopathy. Experimental Agriculture, 50(4), 611-624. https://doi.org/10.1017/S0014479714000106

Frison, G., Favretto, D., Zancanaro, F., Fazzin, G., & Ferrara, S. D. (2008). A case of β-carboline alkaloid intoxication following ingestion of Peganum harmala seed extract. Forensic Science International, 179(2-3), e37-e43. https://doi.org/10.1016/j.forsciint.2008.05.003

Gatti, A. B., Ferreira, A. G., Arduin, M., & Perez, S. C. G. D. A. (2010). Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Botanica Brasilica, 24, 454-461. https://doi.org/10.1590/S0102-33062010000200016

Gharde Y, Singh PK, Dubey RP, Gupta PK (2018) Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot 107:12–18. https://doi.org/10.1016/j. cropro.2018.01.007

Glab L, Sowiński J, Bough R, Dayan FE (2017) Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. In: Sparks DL (ed) Advances in agronomy, vol 145. Academic Press, Cambridge, pp 43–95. https://doi.org/10.1016/bs.agron. 2017.05.001

Grover JP, in Encyclopedia of Ecology, 2008, Population and Community Interactions,https://www.sciencedirect.com/topics/earth-and-planetary-sciences/allelopathy

Hadacek, F., Bachmann, G., Engelmeier, D., & Chobot, V. (2011). Hormesis and a chemical raison d'ětre for secondary plant metabolites. Dose-response, 9(1), dose-response. https://doi: 10.2203/dose-response.09-028.Hadacek

Hernandez-Tenorio, F., Miranda, A. M., Rodríguez, C. A., Giraldo-Estrada, C., & Sáez, A. A. (2022). Potential strategies in the biopesticide formulations: a bibliometric analysis. Agronomy, 12(11), 2665. https://doi.org/10.3390/agronomy12112665

James JF, Bala R, 2003. Allelopathy: How Plants Suppress Other Plants. IFAS, University of Florida, USA.

Kamal, J. (2010). Allelopathic potential of sunflower (Doctoral dissertation, Quaid-i-Azam University Islamabad, Pakistan).

Karkacier M, Erbas M, Uslu MK, Aksu M, 2003. Comparison of Different Extraction and Detection Methods for Sugars Using Amino –Bonded Phase HPLC. Journal of Chromatographic Science, 41(6): 331-333. https://doi.org/10.1093/chromsci/41.6.331

Kartal, M., Altun, M. L., & Kurucu, S. (2003). HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L. Journal of pharmaceutical and biomedical analysis, 31(2), 263-269. https://doi.org/10.1016/S0731-7085(02)00568-X

Khursheed A, Rather MA, Jain V et al (2022) Plant based natural products as potential ecofriendly and safer biopesticides: a comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 173:105854. https://doi.org/10. 1016/J.MICPATH.2022.105854

Lykogianni, M., Bempelou, E., Karamaouna, F., & Aliferis, K. A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Science of the Total Environment, 795, 148625. https:// doi.org/10.1016/j.scitotenv.2021.148625

Li, J., Chen, L., Chen, Q., Miao, Y., Peng, Z., Huang, B., ... & Du, H. (2021). Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific reports, 11(1), 4303. https://doi:10.1038/s41598-021-83752-6

Mahmoudian, M., Salehian, P., & Jalilpour, H. (2002). Toxicity of Peganum harmala: review and a case report.

Motmainna M, Shukor BA, Md. Kamal Uddin J et al (2021) Assessment of allelopathic compounds to develop new natural herbicides: a review. Allelopath J 52:21–40. https://doi.org/10.26651/allelo.j/2021-52-1-1305

Moran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65. https://doi.org/10.1016/j.cropro.2015.03.004

Oecd, F. A. O. (2022). OECD-FAO agricultural outlook 2022-2031.

Reigosa, M. J., Sánchez-Moreiras, A., & González, L. (1999). Ecophysiological approach in allelopathy. Critical reviews in plant sciences, 18(5), 577-608. https://doi.org/10.1080/07352689991309405

Rezvani, R., & Dadkhah, A. (2023). A study of The effect of the aqueous extract of different organs of Peganum harmala L. on the germination and growth of Amaranthus retroflexus L. and Chenopodium album L. Iranian Journal of Seed Science and Technology, 12(1), 1-14. https://doi.10.22092/IJSST.2022.359764.1451

Salim, M. R., Halim, W. Z. A. W. A., & Yusoff, N. (2022). Evaluation of Allelopathic Potential of Pluchea indica on Brassica chinensis and Zea mays. Journal Of Agrobiotechnology, 13(1S), 9-16. https://doi.org/10.37231/jab.2022.13.1S.308

Sheahan, M. C., & Chase, M. W. (2000). Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae. Systematic Botany, 25(2), 371-384. https://doi.org/10.2307/2666648

Torija, E., Díez, C., Matallana, C., Camara, M., Camacho, E., & Mazarío, P. (1998). Influence of freezing process on free sugars content of papaya and banana fruits. Journal of the Science of Food and Agriculture, 76(3), 315-319. https://doi.org/10.1002/(SICI)1097-0010(199803)76:3<315::AID-JSFA929>3.0.CO;2-7

Ünal, B. T., İşlek, C., Ezer, T., & Düzelten, Z. (2017). Cinclidotus pachylomoides (Bryophyta)’in biber ve mısır bitkileri üzerine allelopatik etkileri. Anatolian Bryology, 3(2), 58-67. https://doi: 10.26672/anatolianbryology.331870

Zhou, Y. H., & Yu, J. Q. (2006). Allelochemicals and photosynthesis. Allelopathy: A physiological process with ecological implications, 127-139. https://doi.org/10.1007/1-4020-4280-9_6

Witham FH, Blayles DF, Levlin RM, 1971. Experiments in Plant Physiology, Van Nostrand Reinhold Company, New York, 55-56.

Wanntorp, L., & Louis, P. (2011). Swedish museum of natural history. Flowers on the Tree of Life. Series: Systematics Association Special Volume Series, 1, 326.

Published

2023-12-24

How to Cite

kara, murat, & BATTAL, P. (2023). Effects of Peganum harmala L. Plant Extract on the Development of Wheat (Triticum vulgare L.) and Purslane (Portulaca oleracea L.) Plants. EJONS INTERNATIONAL JOURNAL, 7(4). https://doi.org/10.5281/zenodo.10488227