Üzerlik (Peganum harmala L. ) Bitki Ekstraktının Buğday (Triticum vulgare L. ) ve Semizotu (Portulaca oleracea L.) Bitkilerinin Gelişimi Üzerindeki Etkileri
DOI:
https://doi.org/10.5281/zenodo.10488227Özet
Tarımsal üretimde yabancı ot kontrolünde kimyasal içerikli maddeler kullanımının olumsuz etkileri her geçen gün artmaktadır. Bu nedenle yabancı ot kontrolünde çevre ve canlılar üzerinde olumsuz etkisi bulunan kimyasallar yerine bitkisel kaynaklı çevreye dost maddelerin kullanılması önemli arz etmektedir. Çalışma Van Yüzüncü Yıl Üniversitesi Fen-Edebiyat Fakültesinde gerçekleştirilmiştir. Uygulama olarak allelopatik etkisi bilinen üzerlik (Peganum harmala L.) bitkisinin %2, %4 ve %8 ekstraktları belirlenmiştir. Bitki materyali olarak Palandöken 97 buğday (Triticum vulgare L.) çeşidi ve BT Yeşil kulak semizotu (Portulaca oleracea L.) çeşidi kullanılmıştır. Çalışma tesadüf parselleri deneme desenine göre 3 tekerrürlü olarak yürütülmüştür. Çalışma sonunda bitkilerde bazı morfolojik, fizyolojik ve biyokimyasal değişimler incelenmiştir. Sonuç olarak, Peganum harmala L. bitki ekstraktı hedef bitkilerde kök ve gövde gelişimini engellemiştir. Klorofil ve karotenoid miktarlarında artışa, şeker seviyelerinin azalmasına neden olmuştur. Elde edilen sonuçlar değerlendirildiğinde P. harmala L. yaprağının bitkiler ve yabani otlar üzerindeki allelopatik potansiyelin önemli bir kaynağı olduğunu ve gelecekte yabani otların kontrol altına alınması yoluyla bitkisel üretimin sürdürülebilirliği için değerli bir doğal herbisit olarak kullanılabileceğini ortaya konmuştur.
Referanslar
Arıkan N, Elibüyük İÖ 2015. Yabancı otlarla mücadelede allelopatinin kullanımı. Türk Bilimsel Derlemeler Dergisi, 8(1): 46-50.
Arnon DI, Whatley F R, 1949. Is Chloride a Coenzyme of Photosynthesis?. Science, 110(2865): 554-556.
Aslan, M. (2006). Ürünlerin birbirine olan allelopatik etkileri ve ekim nöbeti sistemlerinin oluşturulmasında allelopatinin önemi. Allelopati Çalıştayı Bildiri Kitabı ISBN, 975-407.
Ballı, Z. D., Tülay, E. Z. E. R., Ünal, B. T., & İşlek, C. (2018). Effects of Plagiomnium undulatum (Bryophyta) Extracts on Seedling Growth of Sinapis arvensis. Anatolian Bryology, 4(2), 84-91. https://doi.org/10.26672/anatolianbryology.467328
Bhadoria PBS, 2011. Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture, 1(1): 7-20.
Chon, S. U., & Nelson, C. J. (2010). Allelopathy in Compositae plants. A review. Agronomy for Sustainable Development, 30(2), 349-358. https://doi.org/10.1051/agro/2009027
Dai, L., Wu, L., Zhou, X., Jian, Z., Meng, L., & Xu, G. (2022). Effects of water extracts of Flaveria bidentis on the seed germination and seedling growth of three plants. Scientific Reports, 12(1), 17700. https://doi.org/10.1038/s41598-022-22527-z
Dogba, M., Kougbo, M. D., Konan, A. S., & Malan, D. F. (2023). Allelopathic effects of aqueous leaf extracts of five invasive species in Côte d'Ivoire on maize (Zea mays) and rice (Oryza sativa). https://doi.org/10.56781/ijsrr.2023.2.1.0034
Einhellig FA, 1996. Interactions Involving Allelopathy in Cropping Systems. Agronomy Jornal, 88(6): 886-893. https://doi.org/10.2134/agronj1996.00021962003600060007x
El Gendy, M. A., & El-Kadi, A. O. (2009). Peganum harmala L. differentially modulates cytochrome P450 gene expression in human hepatoma HepG2 cells. Drug Metabolism Letters, 3(4), 212-216. https://doi.org/10.2174/187231209790218163
Farooq, M., Hussain, T., Wakeel, A., & Cheema, Z. A. (2014). Differential response of maize and mungbean to tobacco allelopathy. Experimental Agriculture, 50(4), 611-624. https://doi.org/10.1017/S0014479714000106
Frison, G., Favretto, D., Zancanaro, F., Fazzin, G., & Ferrara, S. D. (2008). A case of β-carboline alkaloid intoxication following ingestion of Peganum harmala seed extract. Forensic Science International, 179(2-3), e37-e43. https://doi.org/10.1016/j.forsciint.2008.05.003
Gatti, A. B., Ferreira, A. G., Arduin, M., & Perez, S. C. G. D. A. (2010). Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Botanica Brasilica, 24, 454-461. https://doi.org/10.1590/S0102-33062010000200016
Gharde Y, Singh PK, Dubey RP, Gupta PK (2018) Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot 107:12–18. https://doi.org/10.1016/j. cropro.2018.01.007
Glab L, Sowiński J, Bough R, Dayan FE (2017) Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. In: Sparks DL (ed) Advances in agronomy, vol 145. Academic Press, Cambridge, pp 43–95. https://doi.org/10.1016/bs.agron. 2017.05.001
Grover JP, in Encyclopedia of Ecology, 2008, Population and Community Interactions,https://www.sciencedirect.com/topics/earth-and-planetary-sciences/allelopathy
Hadacek, F., Bachmann, G., Engelmeier, D., & Chobot, V. (2011). Hormesis and a chemical raison d'ětre for secondary plant metabolites. Dose-response, 9(1), dose-response. https://doi: 10.2203/dose-response.09-028.Hadacek
Hernandez-Tenorio, F., Miranda, A. M., Rodríguez, C. A., Giraldo-Estrada, C., & Sáez, A. A. (2022). Potential strategies in the biopesticide formulations: a bibliometric analysis. Agronomy, 12(11), 2665. https://doi.org/10.3390/agronomy12112665
James JF, Bala R, 2003. Allelopathy: How Plants Suppress Other Plants. IFAS, University of Florida, USA.
Kamal, J. (2010). Allelopathic potential of sunflower (Doctoral dissertation, Quaid-i-Azam University Islamabad, Pakistan).
Karkacier M, Erbas M, Uslu MK, Aksu M, 2003. Comparison of Different Extraction and Detection Methods for Sugars Using Amino –Bonded Phase HPLC. Journal of Chromatographic Science, 41(6): 331-333. https://doi.org/10.1093/chromsci/41.6.331
Kartal, M., Altun, M. L., & Kurucu, S. (2003). HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L. Journal of pharmaceutical and biomedical analysis, 31(2), 263-269. https://doi.org/10.1016/S0731-7085(02)00568-X
Khursheed A, Rather MA, Jain V et al (2022) Plant based natural products as potential ecofriendly and safer biopesticides: a comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog 173:105854. https://doi.org/10. 1016/J.MICPATH.2022.105854
Lykogianni, M., Bempelou, E., Karamaouna, F., & Aliferis, K. A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Science of the Total Environment, 795, 148625. https:// doi.org/10.1016/j.scitotenv.2021.148625
Li, J., Chen, L., Chen, Q., Miao, Y., Peng, Z., Huang, B., ... & Du, H. (2021). Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific reports, 11(1), 4303. https://doi:10.1038/s41598-021-83752-6
Mahmoudian, M., Salehian, P., & Jalilpour, H. (2002). Toxicity of Peganum harmala: review and a case report.
Motmainna M, Shukor BA, Md. Kamal Uddin J et al (2021) Assessment of allelopathic compounds to develop new natural herbicides: a review. Allelopath J 52:21–40. https://doi.org/10.26651/allelo.j/2021-52-1-1305
Moran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65. https://doi.org/10.1016/j.cropro.2015.03.004
Oecd, F. A. O. (2022). OECD-FAO agricultural outlook 2022-2031.
Reigosa, M. J., Sánchez-Moreiras, A., & González, L. (1999). Ecophysiological approach in allelopathy. Critical reviews in plant sciences, 18(5), 577-608. https://doi.org/10.1080/07352689991309405
Rezvani, R., & Dadkhah, A. (2023). A study of The effect of the aqueous extract of different organs of Peganum harmala L. on the germination and growth of Amaranthus retroflexus L. and Chenopodium album L. Iranian Journal of Seed Science and Technology, 12(1), 1-14. https://doi.10.22092/IJSST.2022.359764.1451
Salim, M. R., Halim, W. Z. A. W. A., & Yusoff, N. (2022). Evaluation of Allelopathic Potential of Pluchea indica on Brassica chinensis and Zea mays. Journal Of Agrobiotechnology, 13(1S), 9-16. https://doi.org/10.37231/jab.2022.13.1S.308
Sheahan, M. C., & Chase, M. W. (2000). Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae. Systematic Botany, 25(2), 371-384. https://doi.org/10.2307/2666648
Torija, E., Díez, C., Matallana, C., Camara, M., Camacho, E., & Mazarío, P. (1998). Influence of freezing process on free sugars content of papaya and banana fruits. Journal of the Science of Food and Agriculture, 76(3), 315-319. https://doi.org/10.1002/(SICI)1097-0010(199803)76:3<315::AID-JSFA929>3.0.CO;2-7
Ünal, B. T., İşlek, C., Ezer, T., & Düzelten, Z. (2017). Cinclidotus pachylomoides (Bryophyta)’in biber ve mısır bitkileri üzerine allelopatik etkileri. Anatolian Bryology, 3(2), 58-67. https://doi: 10.26672/anatolianbryology.331870
Zhou, Y. H., & Yu, J. Q. (2006). Allelochemicals and photosynthesis. Allelopathy: A physiological process with ecological implications, 127-139. https://doi.org/10.1007/1-4020-4280-9_6
Witham FH, Blayles DF, Levlin RM, 1971. Experiments in Plant Physiology, Van Nostrand Reinhold Company, New York, 55-56.
Wanntorp, L., & Louis, P. (2011). Swedish museum of natural history. Flowers on the Tree of Life. Series: Systematics Association Special Volume Series, 1, 326.
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2023 EJONS INTERNATIONAL JOURNAL
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.