First Orbital Period Analysis of QY Cam Eclipsing Binary Star

Authors

DOI:

https://doi.org/10.5281/zenodo.15048508

Keywords:

Eclipsing Binary Stars, QY Cam, Photometric, O-C Analysis, TESS

Abstract

In this study, orbital period analysis of QY Cam eclipsing binary star systems is presented for the first time. Period analysis is performed using the O-C method. Minimum times obtained from Transiting Exoplanet Survey Satellite (TESS) satellite observations and all minimum times given in the literature are used in the O-C analysis. As a result of the parabolic fit to the O-C diagram of the system, which is made using the least squares method, the quadratic term is found to be -1.16(7)x10^(-9) days. This value of the quadratic term indicates that the orbital period of the system decreases regularly with a rate of 0.029(5) s/year. The physical mechanisms that may cause this decrease in the orbital period are discussed.

References

Applegate, J.H., 1992. A mechanism for orbital period modulation in close binaries. Astrophysical Journal, 385: 621-629.

Barberá, R., 1996. AVE (www.astrogea.org/soft/ave/introave.htm) (Erişim Tarihi: 05.01.2025)

Erdem, A., Doğru, S.S., Soydugan, F., Çiçek, C., Demircan, O., 2010. Period studies of five neglected Algol-type binaries: RW Cet, BO Gem, DG Lac, SW Oph and WY Per. New Astronomy, 15(7): 628-636.

Erdem, A., Öztürk, O., 2014. Non-conservative mass transfers in Algols. Monthly Notices of the Royal Astronomical Society, 441(2): 1166-1176.

Hajdu, T., Borkovits, T., Forgács-Dajka, E., Sztakovics, J., Bódi, A., 2022. Eclipse timing variation analysis of OGLE-IV eclipsing binaries towards the Galactic Bulge–II. Short periodic triple stellar systems. Monthly Notices of the Royal Astronomical Society, 509(1): 246-260.

Irwin, J.B., 1959. Standard light-time curves. Astronomical Journal, 64: 149–155.

Khruslov, A.V., 2006. New algol-type eclipsing binaries in Camelopardalis. Perem. Zvezdy Prilozh, 6: 6.

Kochanek, C.S., Shappee, B.J., Stanek, K.Z., 2017. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publications of the Astronomical Society of the Pacific, 129(980): 104502.

Kopal, Z., 1955. The classification of close binary systems. Annales d'Astrophysique, 18: 379.

Lanza, A.F., Rodonó, M., 1999. Orbital period modulation and quadrupole moment changes in magnetically active close binaries. Astronomy and Astrophysics, 349: 887-897.

Moe, M., Kratter, K.M., 2021. Impact of binary stars on planet statistics- I. Planet occurrence rates and trends with stellar mass. Monthly Notices of the Royal Astronomical Society, 507(3): 3593-3611.

Öztürk, O., Erdem, A., 2022. First photometric study of two eclipsing binary star systems: V523 And and V543 And. New Astronomy, 92.

Ricker, G.R., Winn, J.N., Vanderspek, R., 2015. Transiting Exoplanet Survey Satellite (TESS). Journal of Astronomical Telescopes, Instruments, and Systems, 1(1): 014003.

Shappee, B.J., Prieto, J.L., Grupe, D., 2014. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617. Astrophysical Journal, 788(1).

Zasche, P., Liakos, A., Niarchos, P., ve ark., 2009. Period changes in six contact binaries: WZ And, V803 Aql, DF Hya, PY Lyr, FZ Ori, and AH Tau. New Astronomy, 14(2): 121–128.

Published

2025-03-19

How to Cite

ÖZTÜRK, O. (2025). First Orbital Period Analysis of QY Cam Eclipsing Binary Star. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 9(1), 20–25. https://doi.org/10.5281/zenodo.15048508

Issue

Section

Articles