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Article Info  Abstract: The increasing global population and unsustainable energy consumption 

have led to a growing energy demand, making it imperative to predict future energy 

requirements and devise proactive strategies. Among renewable energy sources, solar 

energy stands out as a clean, eco-friendly, and readily accessible option, facilitating the 

integration of renewable energy into power grids. To ensure successful grid operation, 

efficient energy management, and economic planning, the development of an optimal 

solar photovoltaic (PV) power forecasting technique has become critical. Traditional 

forecasting methods, such as Autoregressive Integrated Moving Average (ARIMA), 

Seasonal ARIMA (SARIMA), Numerical Weather Prediction (NWP), Artificial Neural 

Networks (ANN), and hybrid artificial intelligence approaches, are often inadequate 

for long-term PV power output predictions. While short-term forecasting may suffice 

for small or standalone PV systems, large-scale PV systems integrated into power grids 

require reliable long-term predictions for effective management and operation. The 

increasing complexity of grid-integrated renewable energy systems further emphasizes 

the need for advanced forecasting methodologies capable of providing accurate and 

long-term predictions. This study addresses this critical challenge by employing a deep 

learning-based Long Short-Term Memory (LSTM) artificial intelligence model to 

forecast long-term PV power outputs. Unlike existing approaches, this research 

introduces a novel model utilizing the Nadam optimizer, which enhances performance 

on time-series data. In our study, we utilized single-layer, three-layer, and four-layer 

LSTM models to predict the power output of solar panels. Additionally, we 

experimented with ReLU and Leaky ReLU activation functions across all model 

configurations. To evaluate performance, we employed several metrics, including 

Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Percentage Error (MAPE), and Symmetric Mean Absolute 

Percentage Error (SMAPE). By leveraging this innovative approach, the proposed 

LSTM model delivers improved accuracy and reliability in long-term solar PV power 

forecasting, offering valuable insights for grid operators and energy planners. 
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1. Introduction 

Energy is a fundamental and conserved property of physical systems, which cannot be 

directly observed but can be quantified through its contextual state. In simple terms, it is defined 

as the capacity to perform work and manifests in various forms, including potential, luminous, 

thermal, kinetic, electrical, chemical, nuclear, and acoustic energy. Globally, as technology 

advances, the demand for energy continues to rise, and Türkiye is no exception. Currently, 

despite regional variations in energy resource utilization, a significant portion of global energy 

demand is still met through fossil fuels. To address evolving energy needs, governments are 
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revising existing policies, driven by the finite reserves of fossil resources, their high depletion 

risks, and environmental degradation. This has led nations to seek alternatives to primary 

energy sources. Renewable energy refers to sources with continuous energy flows, such as 

solar, wind, biomass, geothermal, hydroelectric, and wave energy. Worldwide, interest in 

renewable energy sources including solar, wind, hydrogen, and geothermal has grown 

significantly, leading to increased adoption. Among these, solar energy stands out as one of the 

most critical and inexhaustible resources. Its advantages, such as being clean, noiseless, cost-

effective, reliable, and environmentally friendly, make it a stronger alternative compared to 

conventional energy sources (Dandil and Gürgen, 2017). Figure 1(a) illustrates the global 

production of renewable energy sources; hydroelectric, wind, solar, and others (including 

biomass, geothermal, and wave energy) from 1965 to 2022. Notably, solar energy adoption has 

accelerated rapidly since the late 2000s, surpassing electricity generation from wind and 

hydropower. Figure 1(b) displays country-level electricity production (in TWh) from these 

renewable sources. China leads by a significant margin, followed by the United States, India, 

Germany, France, Türkiye, the United Kingdom, and Canada.   Focusing on global solar energy 

production, Figure 2(a) maps worldwide electricity generation from solar sources in 2022. 

Figure 2(b) compares output across eight countries, with China again leading, followed by the 

United States, Germany, India, France, the United Kingdom, Türkiye, and Canada. Figure 2(c) 

highlights Türkiye’s solar energy production trends from 1996 to 2022. Post-2015, the rapid 

expansion of solar conversion systems has driven sustained growth in solar energy output 

(Anonymous, 2025a). 

 

 

Figure 1. (a) The global production of renewable energy sources; hydroelectric, wind, solar, and 

others (including biomass, geothermal, and wave energy) from 1965 to 2022. (b) The country-level 

electricity production (in TWh) from these renewable sources. 
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Figure 2. (a) In 2022, the global electricity generation levels from solar energy, (b) a comparison of 

the generated energy values across 8 countries, and (c) solar energy production levels in Türkiye 

between 1996 and 2022 (Anonymous, 2025a). 
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Figure 3. The installed solar power capacity and annual solar energy production values between 2011 

and 2021 (TEİAŞ. "Turkey Electricity Generation Statistics"), (Anonymous, 2025b). 

Figure 3 presents Türkiye’s installed solar capacity and annual energy production from 

solar conversions between 2011 And 2021. Ongoing research aims to optimize alternative 

energy utilization and enhance efficiency. Solar radiation levels, critical for electricity 

generation via photovoltaic (PV) panels, fluctuate with daily weather and seasonal variations. 

PV systems convert sunlight directly into electricity, playing an increasingly vital role in 

meeting energy demands.   

PV panel output varies with geographic location, seasonal shifts, and environmental 

conditions. Adjusting panel tilt angles monthly, seasonally, or annually maximizes energy 

capture. Modern power systems require real-time, daily, weekly, monthly, and annual 

production planning to ensure secure and cost-effective operation. Consequently, forecasting 

output and load trends for renewable installations like PV plants has become essential. It is 

well-established that solar power station efficiency fluctuates with weather conditions (Lorenz 

et al., 2009). 

 The prediction of power output values generated by PV systems at different times is 

crucial for the efficient and economical use of solar panels as a reliable energy source. With the 

increasing per capita energy consumption, investments in power plants are being sustained to 

maintain the supply-demand balance in a healthy manner. The growing awareness of clean 

energy has been significantly increasing investments in environmentally friendly and long-

lasting Solar Power Plants (SPPs) over time. The climatic conditions of the region where SPPs 

are established directly influence the output power obtained from PV panels and the cost of 

energy (Gök et al., 2019). For this reason, studies on predicting the power output values of PV 

panels have seen a remarkable increase in recent years. Accurate prediction of power output is 

critical to evaluating the true performance of PV panels; even a slight increase of a few degrees 

in the PV panel's temperature, coupled with lower solar irradiance, can significantly enhance 

the system's energy conversion efficiency and, consequently, its power output (Wang et al., 

2011).  

Until 2010, the research and development of PV panel production forecasting models 

were at a minimal level. Most models relied on predicting the radiation incident on the PV solar 
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panel, and the generated electricity was calculated based on these values. Data sources included 

curves provided by PV solar panel manufacturers, a set of equations, or known empirical 

relationships (Vrettos et al., 2019). However, over the last decade, the exponential increase in 

PV systems worldwide and studies on the characteristics of this energy source have 

significantly boosted the development of new and accurate forecasting models. Prediction 

models typically depend on reviewing statistical data of production over time and long-term 

meteorological records, providing essential information for determining the expected behaviour 

of production systems through a variety of methods (Badwawi et al., 2015). There is substantial 

interest in predicting energy production in multi-source systems that evaluate the current power 

output of each component (Badwawi et al., 2015; Vrettos et al., 2019). These predictions, 

enabled by adequate modelling and analytical processes, allow for determining the amount of 

energy generated based on the system's climatic and operational conditions (Mellit and Pavan, 

2010). Various methodologies for prediction in PV energy systems have been defined in the 

literature. In some studies, the energy generated by PV systems has been predicted using neural 

network methods (Bou-Rabee et al., 2017; Kumar and Saravanan, 2017; Abdel-Nasser and 

Mahmoud, 2019). This type of analysis has also been applied to predict the temperature of PV 

modules (Kim et al., 2017a). Solar radiation predictions have been determined using statistical 

tests for percentage errors, mean absolute bias, and squared errors. Today, thanks to the 

advancements provided by different models used for prediction, various classifications can be 

made depending on the criteria considered (McCulloch and Pitts, 1943; Hornik et al., 1989). 

Some criteria consider the linearity of the model, classifying them as linear and nonlinear. 

Others take into account the method used for the mathematical development of the model, 

categorizing them as models based on artificial intelligence techniques or regressive models 

(Mellit and Pavan, 2010). Figure 4 illustrates the classification of PV panel power output 

prediction models and techniques (Gutiérrez et al., 2021). The choice of prediction method 

primarily depends on the intended prediction horizon, which represents the time interval 

between the published forecast and the most recent observation (Voyant et al., 2017a). For intra-

hour delivery times, statistical methods based on ground measurement time series provide 

excellent forecasts by projecting current conditions into the near future, as local weather 

patterns exhibit minimal changes over this time scale (Diagne et al., 2013). Regarding forecasts 

ranging from 6 hours to a few days, physical methods, such as numerical weather predictions, 

yield better results than statistical methods by indirectly understanding the local cloud 

probability through the dynamic modelling of the atmosphere and the transmittance of solar 

radiation (Voyant et al., 2012; Diagne et al., 2013). Intra-day solar radiation forecasts (1 to 6 

hours) can be addressed using statistical and physical methods or their combinations. Statistical 

methods derive temporal evolution models from past time series and project the model into the 

time to be predicted (McCulloch and Pitts, 1943; Hornik et al., 1989; Voyant et al., 2012, 2017; 

Diagne et al., 2013; Kumar and Saravanan, 2017; Mirzapour et al., 2019; Abdel-Nasser and 

Mahmoud, 2019). These methods offer the advantage of simplicity but lack generalization. 

Physical methods have better generalization capabilities; however, their application is hindered 

by complexity and computational costs. Recently, with the rapid advancement of artificial 

neural network (ANN) models and the growing interest in their reliability, these techniques 

have also become widely used in PV power forecasting. An artificial neural network emulates 

the learning system of the human brain and can establish input-output relationships for both 

linear and nonlinear systems with less computational effort (McCulloch and Pitts, 1943; Hornik 

et al., 1989). Consequently, the extensive use of artificial neural networks for predicting various 

criteria such as irradiance and temperature in PV systems can yield reliable results (Mellit and 

Pavan, 2010b; Wang et al., 2011). If we are to explain the primary reasons why ANN models 

are increasingly preferred for PV power output forecasting today, it lies in the unique 

characteristics of neural networks. ANNs are composed of multiple simultaneously operating 



(Turker et al., 2025) 

 

135 
 

cells, allowing them to manage complex functions through these interconnected units. The 

information acquired is stored across the network in a distributed manner, ensuring that the 

failure of some cells does not result in the loss of information. They can function with 

incomplete data and handle previously unseen examples. Additionally, they excel at pattern 

association, completion, and classification. ANNs possess self-learning capabilities and error 

tolerance, meaning they can continue functioning even if some of their cells fail. Any issue 

arising in the network results in gradual and relative degradation over time. In summary, the 

advantages of artificial intelligence techniques in forecasting the power output of PV solar 

panels include their ability to define nonlinear relationships through robust data analytics and 

complexity management, enabling more precise predictions. These techniques can work with 

adaptive and continuously updated models due to their learning capabilities, provide fast 

processing and real-time forecasting, offer scalability and a broad range of applications, reduce 

human errors, and enable comprehensive analyses that account for environmental factors. With 

the development of new models based on artificial intelligence techniques and the growing 

number of PV plants worldwide, PV plant modelling, reliable energy power output forecasting, 

and efficiency have become active areas of research in recent years (Mellit and Kalogirou, 

2008). Although numerous studies in the literature focus on predicting parameters such as 

temperature and solar radiation using ANN models, long-term comprehensive research on solar 

panel power forecasting is relatively scarce. However, accurate long-term PV power output 

forecasting plays a pivotal role in informed decision-making, efficient energy planning, grid 

stability, financial sustainability, and transitioning toward a sustainable and renewable energy 

future. To achieve long-term power output predictions for a solar panel, certain detailed data 

are required. However, such data are sometimes unavailable due to the lack of relevant 

databases (Mellit and Kalogirou, 2008; Khatib et al., 2012). Therefore, prediction techniques 

must also be applied to sizing and meteorological data inputs to improve efficiency and plan 

operations effectively (Hocaoǧlu et al., 2008; Chen et al., 2011; Linares-Rodríguez et al., 2011). 

 

Figure 4. Classification of photovoltaic panel power output forecasting models 

Various studies have been proposed in the literature to predict PV panel power outputs 

using ANN techniques. The relevant literature and the methodologies employed in these studies 

can be briefly summarized comparatively as follows: Lorenz et al. (2009) and Kudo et al. (2009) 

presented very short-term forecasts of solar irradiance predictions for a temporal range of up to 

a few hours. These forecasts were derived using multiple linear regression methods and ANN 

models, based on weather data to reveal PV panel power output characteristics (Kudo et al., 

2009; Lorenz et al., 2009). Shi et al. (2012) conducted studies aimed at predicting next-day PV 

panel power outputs using support vector machines, a machine learning technique. However, 
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classical SVM algorithms are better suited for binary classification problems, whereas PV 

power prediction is typically a multi-classification problem. Wang et al. (2011) demonstrated 

in their study that the most suitable method for predicting PV power outputs is ANN. They used 

an ANN trained with multivariate time series data of output power, average air temperature, 

and clear sky indices. The main drawback of predefined weather models is their reduced 

flexibility in dealing with changes in unpredictable weather conditions throughout the day. 

Furthermore, predictions based on air temperature are insufficient, as power generation is more 

closely related to the temperature of the PV module. Approximate equations exist for 

calculating PV module temperature from solar irradiance and air temperature, but these are 

typically adopted only for quantitative analyses during PV module performance evaluations 

(Wang et al., 2011). Kou et al. (2013) used an ANN structure trained with the backpropagation 

(BP) method, along with meteorological data, to predict daily solar panel output power. They 

argued that PV power prediction is a typical multi-classification problem and concluded that 

ANN, particularly BP neural networks, is the most promising method for PV forecasting due 

to its advantages in simulating complex nonlinear systems, strong learning ability, good 

approximation performance, and error tolerance. However, BP networks have inherent 

drawbacks such as slow convergence, susceptibility to local minima, and difficulty in achieving 

a global optimal solution. To improve convergence, enhancements to the BP network have been 

made. Zhang et al. (2013) integrated the PSO evolutionary algorithm into a hybrid method for 

training ANN, using irradiance values as inputs to derive solar radiation predictions. Qasrawi 

et al. (2015) designed an ANN trained with BP (Levenberg-Marquardt) using data from solar 

panels installed in different regions and satellite-derived measurements, presenting monthly 

forecasts. Inputs such as humidity, solar irradiance, daylight duration, and clear sky conditions 

were included in the system. Zhu et al. (2015) applied wavelet transform to reduce data and 

subsequently used a hybrid method to train ANN. After applying wavelet decomposition to 

restructure the data, they predicted solar panel output power for ultra-short time intervals with 

fewer mathematical operations compared to existing ANN studies (Zhu et al., 2015). Prokop et 

al. (2012) proposed a study for short- and medium-term PV plant output predictions using 

ANFIS and multi-layer perceptron (MLP) methods, achieving consistent results with an 

average accuracy of 2%. They reported that ANFIS provided more precise results compared to 

MLP. Paulin and Praynlin conducted a comparative study training BP-based ANN with inputs 

including average ambient temperature, panel temperature, inverter temperature, solar 

irradiance, wind speed, and power output (Paulin and Praynlin, 2016). Rana et al. (2015) 

compared the results of iterative and non-iterative methods using different ANN architectures, 

demonstrating that iterative methods yielded closer results for short-term power output 

forecasting. Kim et al. (2017) proposed a daily forecasting model based on weather predictions 

for PV system outputs, integrating it with a commercial PV monitoring system in Korea, and 

found it to outperform existing forecasting models. Cai et al. (2010) proposed a NARX 

network-based forecasting model for hourly PV system power output without relying on 

complex meteorological instrumentation. Yang et al. (2014) developed a forecasting model for 

energy production in PV systems using temperature and precipitation probability data from the 

day before, demonstrating good performance on sunny days. Su et al. (2012) developed new 

real-time forecasting models for PV system power output and energy efficiency, validating 

them with measured data from grid-connected PV systems in Macau. As listed above, studies 

in the literature predominantly focus on short- and medium-term solar panel output forecasting. 

However, very few studies have investigated the long-term data-driven forecasting of solar 

panel power output efficiency. 
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In this present study, Long Short-Term Memory (LSTM) network models were developed 

to predict the energy production of solar panels, utilizing daily data collected over a one-year 

period (January 2023 – December 2023). The data were gathered from the location where the 

solar panels were installed and began generating energy. The collected dataset includes one 

year of solar panel electricity production, daily measurement data, the measurement month, 

total operational hours, daily average temperature, and weather conditions. Using this dataset, 

the temporal modelling capabilities and forecasting performance of the LSTM models were 

analysed. In our study, we utilized single-layer, three-layer, and four-layer LSTM models to 

predict the power output of solar panels. Additionally, we experimented with ReLU and Leaky 

ReLU activation functions across all model configurations. To evaluate performance, we 

employed several metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and Symmetric 

Mean Absolute Percentage Error (SMAPE). 

2. Materials and Methods 

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network 

(RNN) model. RNN is a class of artificial neural networks (ANN). ANN techniques offer 

various advantages over the techniques. However, RNN has a distinctive feature it can retain 

information. This allows it to learn short-term dependencies; however, as data grows, RNN 

may not be able to mitigate this issue. To address this problem and establish a long-term 

learning dependency, LSTM is used. Unlike the conventional neurons used in RNN, the primary 

advantage of utilizing an LSTM unit is that the cell state accumulates activities over time. Since 

derivatives are distributed over sums and their derivatives are propagated backward in time, 

errors do not vanish rapidly. This enables LSTM to perform tasks over long sequences and 

explore long-range features. One of the major challenges encountered when using a PV source 

is overcoming the nonlinear output characteristics. LSTM-based models are effective in 

understanding the nonlinear relationship between the input and output parameters of a given 

dataset. Therefore, LSTM models have been used for long-term analysis of the effects of 

meteorological parameters on PV panel output. Figure 5 illustrates the diagram of an LSTM 

cell. Various memory blocks or cells represented as blocks are used for memorizing information 

and can be utilized through three main mechanisms known as gates. A typical LSTM cell 

network consists of three gates: input, output, and forget gates. These gates are used not only 

to control and preserve the cell states transferred to the next cell but also to manage the hidden 

state and cell state. The role and mathematical representation of each LSTM gate are as follows: 

Input gate: Determines the extent of information to be written into the internal cell state; 

𝑖𝑡 = 𝜎 (𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

Forget gate: Determines the extent to which previous data will be forgotten; 

𝑓𝑡 = 𝜎 (𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Output gate: Determines which output will be generated from the current internal cell state; 

𝑜𝑡 = 𝜎 (𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 
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Figure 5. The diagram of an LSTM cell 

While traditional techniques often rely on external data that is still inaccessible, 

uneconomical, or unreliable most of the time, LSTM can work quite well with intrinsic data. 

This quality of LSTM networks/models makes them stand out and the first choice for PV power 

predictions. MAE (Mean Absolute Error) will be used as a loss recovery method to account for 

the weights of the LSTM network and determined as 

MAE = ∑
|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑛

𝑖=1
              . 

Here, �̂�𝑖 represents the predicted value, 𝑦𝑖 represents the actual value, and  𝑛 defines the 

number of days for which the prediction is made. Mean Squared Error (MSE) is a fundamental 

error metric used to evaluate the performance of predictive models, particularly in regression 

and time-series forecasting. It quantifies the average squared difference between predicted 

values and actual observations, providing a measure of the model's accuracy. Mathematically, 

it is expressed as: 

MSE =
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 

Additionally, by placing the validation data argument into the model, both training and 

testing losses were tracked throughout the training process. RMSE (Root Mean Square Error) 

is defined as follows: 

RMSE = √∑
|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑛

𝑖=1
  . 

The mean absolute percentage error (MAPE) is a commonly used metric for assessing 

prediction accuracy in terms of scale independence and interpretability. The MAPE and error 

variance may be computed as follows:  

MAPE =
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1
x100%  . 

The Symmetric Mean Absolute Percentage Error (SMAPE) is a commonly utilized metric 

for assessing the accuracy of forecasting models, especially in time-series analysis. It is an 

improvement over traditional MAPE, addressing its asymmetry and sensitivity to scale 

variations. SMAPE is defined as: 

SMAPE =
100%

𝑁
∑

|�̂�𝑖 − 𝑦𝑖|

(|𝑦𝑖||�̂�𝑖|)/2

𝑁

𝑖=1
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where �̂�𝑖 represents the forecasted values, 𝑦𝑖 denotes the actual values, and NNN is the 

number of observations. Unlike MAPE, SMAPE normalizes the error by the average of actual 

and predicted values, ensuring that it remains bounded between 0% and 200%, thereby reducing 

bias when dealing with small or zero values. Owing to its symmetric characteristics, SMAPE 

is especially appropriate for assessing renewable energy forecasting models, including solar 

photovoltaic (PV) power predictions, where data variations can be considerable. 

The use of optimizers in prediction tasks with artificial intelligence methods provides 

several advantages, including improved model performance, faster and more efficient training, 

better generalization, the ability to work with less data, easier parameter tuning, and quicker 

training processes. However, selecting the correct optimizer and making appropriate parameter 

adjustments are crucial, as each problem is unique, and a chosen optimizer may not always 

deliver the best performance in every case. In our study, the LSTM model will be used in 

conjunction with the Nadam optimizer. Nadam optimization is a specialized algorithm designed 

for deep neural networks, offering unique features and advantages compared to other popular 

optimization algorithms. Nadam utilizes the Nesterov momentum method, which corrects 

momentum using a pre-computed gradient estimate, enabling faster and more stable updates 

than other optimizers. Nadam has an adaptive learning rate, which dynamically adjusts the 

learning rate based on the weights of each parameter. This allows different parameters to be 

updated at varying speeds during the training process, resulting in more effective learning. 

Momentum aims to accelerate updates by using a weighted sum of past gradients. Nadam 

leverages this momentum to estimate gradients more accurately, enabling faster and smoother 

convergence. Nadam performs particularly well on surfaces with narrow valleys by utilizing a 

gradient-based movement, making it more effective in advancing through non-convex 

optimization problems. Its structure resembles that of basic optimization algorithms like 

Stochastic Gradient Descent (SGD), making it easy to integrate with existing infrastructures. In 

addition to these superior features, Nadam combines the benefits of momentum and Nesterov 

momentum while simultaneously offering an adaptive learning rate, leading to more efficient 

training. This combination is particularly advantageous for non-convex optimization problems, 

as it reduces RMSE error and results in better overall performance. 

 

Figure 6. The flow diagram of the training model we proposed in our present study 

The flow diagram of the training model we proposed in our study is presented in Figure 

6. The flowchart outlines a structured process for time-series forecasting using Long Short-

Term Memory (LSTM) networks. Initially, raw data undergoes preprocessing, including 
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handling missing values, normalization, and conversion into a supervised learning format 

before being reshaped into a three-dimensional structure suitable for LSTM models. The 

training phase begins with initializing the neural network, followed by model training using the 

processed dataset. Once trained, the model is tested on an independent dataset, and its 

performance is evaluated through error calculations and visualized results. This systematic 

approach ensures the model effectively captures temporal dependencies, enhancing predictive 

accuracy. 

 

Figure 7. The solar panel application we proposed in our present study. (a) A top-down and street 

view of the location where the solar panel installation was carried out. (b) An image of the residence 

where the solar panel installation was performed and a view of the rooftop installation. 

The solar panel application we are focused on consists of 8 half-cut panels with a capacity 

of 470 W each (Topcon Monocrystalline model TT470 120TN10), placed as shown in Figure 

7. Its location is specified as 38°34'38.5"N 43°16'13.8"E in Van, Türkiye. The data were 

measured between 1st of January 2023 and 31st of December 2023. The parameters monitored 

include daily total electricity production (kW), full-capacity operating hours, daily average 

temperature, and daily weather conditions (sunny, cloudy, heavy rain, and snowy). 

3. Results 

In our study, we employed single-layer, three-layer, and four-layer LSTM models to 

predict the power output of solar panels. Furthermore, we conducted experiments using ReLU 

and Leaky ReLU activation functions across all models. This enabled us to explore how varying 

the number of LSTM layers and types of activation functions influence the training of the 

model. Figure 8 illustrates the impact of ReLU and Leaky ReLU activation functions on error 

metrics for single-layer LSTM models. To assess performance, the metrics employed include 

Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) 

and Mean Absolute Percentage Error (MAPE). Our analysis revealed a consistent decline in 

error metrics during the training phase for both models. In the model utilising the ReLU 

activation function, it was noted that error rates were elevated, especially in the initial 50 

epochs, but showed a consistent decline in the subsequent training phases. Conversely, in the 

model utilising the Leaky ReLU activation function, the error values were consistently lower 

from the outset and exhibited a more stable trend. Upon a detailed examination of the MAPE 
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and RMSE metrics, it becomes clear that the model employing Leaky ReLU demonstrates 

reduced error values. A notable drawback of the ReLU function is the dead neurone issue, 

which may diminish the model’s responsiveness to specific input values. Due to the fact that 

ReLU assigns a zero derivative for negative inputs, it can hinder weight adjustments, 

consequently impeding the learning rate. In contrast, the Leaky ReLU activation function 

features a minor yet consistent slope for negative inputs, addressing the dead neurone issue and 

facilitating improved generalisation within the model. It can be concluded that Leaky ReLU 

demonstrates enhanced stability and reduced error rates in comparison to ReLU. This benefit 

arises from Leaky ReLU’s capacity to handle negative inputs and its enhanced weight 

adjustment efficiency. Consequently, in time-series analyses like long-term photovoltaic power 

forecasting, selecting the Leaky ReLU function can improve prediction accuracy by promoting 

a more balanced and generalised learning process. 

 

Figure 8. The effects of (a) ReLU and (b) Leaky ReLU activation functions on error metrics for 

single-layer LSTM models 

Figure 9 compares the impact of ReLU and Leaky ReLU activation functions on error 

metrics in three-layer LSTM models. Upon a detailed examination of the MAPE and RMSE 

metrics, it becomes evident that Leaky ReLU results in reduced error values. This enhances the 

model's ability to generalise and aids in avoiding overfitting. Reduced MSE values signify that 

the model's predictions are more accurate and exhibit lower error rates. In summary, this 

analysis shows that in three-layer LSTM models, the Leaky ReLU activation function results 

in reduced error rates and a more consistent learning process when compared to ReLU. This 

can be attributed to the capability of Leaky ReLU to handle negative inputs effectively and its 

enhanced weight update mechanism. In scenarios where maintaining data continuity is 

essential, like in time-series forecasting, selecting the Leaky ReLU activation function can 

improve model accuracy, resulting in more dependable predictions. 

 

Figure 9. The effects of (a) ReLU and (b) Leaky ReLU activation functions on error metrics for three-

layer LSTM models 
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Figure 10 represents the effects of ReLU and Leaky ReLU activation functions on error 

metrics for four-layer LSTM models. The examination of the graphs reveals that although both 

models show a trend of decreasing error during training, the one employing Leaky ReLU 

presents lower and more consistent error metrics. In summary, the model employing Leaky 

ReLU demonstrates reduced MAE, MSE, and RMSE values when contrasted with the model 

that utilises ReLU, resulting in a significant decrease in error rates. In deep architectures 

featuring four layers, the continuous gradient flow enabled by Leaky ReLU enhances weight 

updates, leading to improved generalisation of the model. 

 

Figure 10. The effects of (a) ReLU and (b) Leaky ReLU activation functions on error metrics for four-

layer LSTM models 

As shown in Figure 11, we utilised the Symmetric Mean Absolute Percentage Error 

(SMAPE) metric to assess the forecasting performance of single-layer, three-layer, and four-

layer LSTM models. The model architectures utilised both ReLU and Leaky ReLU activation 

functions to analyse the variations in error rates across the epochs. The graph shows that the 

single-layer ReLU-based LSTM model starts with the highest SMAPE values, which decline 

as the epochs advance. Nonetheless, the error rate is still considerably elevated when juxtaposed 

with more complex models. This can be linked to the limited learning ability of the single-layer 

LSTM. To effectively capture long-term dependencies in time series data, it is typically 

necessary to employ deeper architectures for LSTMs. The restricted capabilities of the single-

layer model result in notably elevated prediction errors during the initial epochs. In the analysis 

of three-layer versus four-layer LSTM models, notable fluctuations in error levels are evident 

in the three-layer configurations, especially in the ReLU-based variant, across the epochs. 

These fluctuations could suggest a lack of consistency in weight adjustments. In comparison, 

the error metrics observed in four-layer models exhibit a more consistent trend. This indicates 

that more complex LSTM architectures improve the model's capacity to grasp long-term 

relationships in time series data. The finding that four-layer models, particularly those 

employing Leaky ReLU activation, attain the lowest error rates can be attributed to Leaky 

ReLU’s capacity to avoid gradient zeroing in negative inputs, facilitating a more balanced 

learning process. Models utilising Leaky ReLU demonstrated a notably reduced risk of 

overfitting, with error levels showing a more consistent trajectory. In summary, the four-layer 

Leaky ReLU-based LSTM model showcases superior performance, achieving the lowest 

SMAPE values. The advanced architecture allows for a more efficient understanding of long-

term dependencies in time series data, while the Leaky ReLU activation function ensures stable 

weight updates and improves prediction accuracy. The results indicate that for long-term 

photovoltaic power forecasting and related time-series analyses, utilising deep LSTM 

architectures with the Leaky ReLU activation function can enhance the model's ability to 

generalise. 
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Figure 11. The Symmetric Mean Absolute Percentage Error (SMAPE) metric to assess the forecasting 

performance of single-layer, three-layer, and four-layer LSTM models 

4. Conclusions 

The rising global appetite for energy, fuelled by swift population expansion and 

unsustainable consumption habits, highlights the critical importance of precise predictions 

regarding future energy requirements. Among renewable energy sources, solar energy stands 

out as a highly promising option because of its abundance, sustainability, and seamless 

integration into contemporary power grids. For optimal grid functionality, energy management, 

and strategic economic planning, dependable long-term predictions of solar photovoltaic (PV) 

power generation are essential. Conventional forecasting techniques, such as statistical methods 

and those leveraging artificial intelligence, frequently fail to deliver the necessary accuracy and 

reliability for long-term predictions, especially in extensive photovoltaic systems connected to 

power grids. Our research tackles these challenges by introducing a sophisticated deep learning 

model that leverages Long Short-Term Memory (LSTM) networks, enhanced through the 

application of the Nadam algorithm. This research delivers an in-depth analysis of model 

performance in long-term PV power forecasting by integrating single-layer, three-layer, and 

four-layer LSTM architectures, while also assessing the effects of ReLU and Leaky ReLU 

activation functions. The results demonstrate that selecting the appropriate activation function 

has a substantial impact on the precision and reliability of predictions. Specifically, Leaky 

ReLU demonstrates superior performance compared to ReLU by addressing the dead neurone 

problem and facilitating better weight updates, which results in enhanced generalisation for 

time-series forecasting tasks. Moreover, our findings suggest that more complex LSTM 

architectures, especially the four-layer configuration, demonstrate enhanced effectiveness in 

capturing long-term dependencies in photovoltaic power data. Implementing Leaky ReLU in 

more complex architectures promotes consistent learning, minimising prediction inaccuracies 

across a range of assessment metrics, such as MAE, MSE, RMSE, and SMAPE. The results 

underscore the significance of fine-tuning model depth and activation functions in the 

development of LSTM-based forecasting models tailored for renewable energy applications. In 

summary, this research presents a strong and effective method for long-term photovoltaic power 

forecasting, showing that utilising deep LSTM architectures alongside the Nadam optimiser 

and Leaky ReLU activation can greatly improve predictive accuracy. The findings from this 

research offer significant benefits for energy planners and grid operators, enabling improved 

management of extensive PV systems. Future work can delve into further refinements, 

including hybrid deep learning models and additional optimisation techniques, to improve 
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forecasting performance and facilitate the sustainable integration of solar energy into global 

power grids. 
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