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Makale Tarihçesi Öz: Bitki ıslahı, tarımsal verimliliği ve mahsul kalitesini artırmak için daha hızlı ve daha 
doğru tahminler sağlayan modelleme stratejilerinden yararlanmak üzere geleneksel 
yöntemlerin ötesine geçmektedir. Geleneksel yöntemler uzun vadeli tarla 
denemelerine dayanırken, yeni ortaya çıkan dijital tarım uygulamaları ve modelleme 
stratejileri genomik seçim, fenotip tahmini ve çevre-genotip etkileşim analizi gibi 
alanlarda verimliliği artırmak için önem kazanmıştır.Makine öğrenimi algoritmaları, 
genetik ve çevresel verileri değerlendirerek bitki ıslahında karmaşık tarımsal 
sistemlerin daha iyi anlaşılmasını sağlar. Destek vektör makineleri (DVM), rastgele 
ormanlar (RF) ve yapay sinir ağları (YSA) gibi algoritmalar, fenotipik özelliklerin ve 
genotip-çevre etkileşimlerinin tahmininde yaygın olarak kullanılmaktadır. Bu 
yöntemler, genetik potansiyelin en iyi şekilde kullanılmasını ve çevresel değişkenliğe 
adaptasyonu sağlayarak sürdürülebilir tarımsal üretime katkıda bulunmaktadır. Bu 
derleme, bitki ıslahında çevresel stres faktörlerinin modellenmesinde ve genotiplerin 
bu koşullara tepkisinin tahmin edilmesinde derin öğrenme ve diğer yapay zeka tabanlı 
tekniklerin önemini vurgulamaktadır. Modelleme stratejileri, bitki ıslahı süreçlerini 
daha verimli hale getirme ve gıda güvenliğine katkıda bulunma potansiyeline sahiptir. 
Bu bağlamda, gelecekte bitki ıslahında modelleme stratejilerinin etkin bir şekilde 
kullanılması, tarımsal biyoteknoloji alanında önemli ilerlemelere yol açacaktır. 
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Article Info  Abstract: Plant breeding is moving beyond traditional methods to leverage modelling 
strategies that provide faster and more accurate predictions to improve agricultural 
productivity and crop quality. While traditional methods rely on long-term field trials, 
emerging digital agriculture applications and modelling strategies have gained 
importance to improve efficiency in areas such as genomic selection, phenotype 
prediction and environment-genotype interaction analysis. Machine learning 
algorithms enable a better understanding of complex agricultural systems in plant 
breeding by evaluating genetic and environmental data. Algorithms such as support 
vector machines (SVM), random forests (RF) and artificial neural networks (ANN) are 
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widely used in the prediction of phenotypic traits and genotype-environment 
interactions. These methods contribute to sustainable agricultural production by 
enabling the optimal utilization of genetic potential and adaptation to environmental 
variability. This review highlights the importance of deep learning and other artificial 
intelligence-based techniques in modelling environmental stressors in plant breeding 
and predicting the response of genotypes to these conditions. Modelling strategies 
have the potential to make plant breeding processes more efficient and contribute to 
food security. In this context, the effective use of modelling strategies in plant breeding 
in the future will lead to significant advances in the field of agricultural biotechnology. 

. 

 

1.Introduction 
Plant breeding is crucial for improving agricultural efficiency and crop quality in the face of a 

growing world population, climate change and the need to sustainably manage limited resources in 
agricultural production. Traditional plant breeding methods are based on the evaluation of phenotypic 
traits of the crops through long-term field experiments. This process requires a lot of time and 
resources and therefore the need for new approaches is becoming increasingly important (Xu, 2010). 
In the last years, emerging modelling strategies and digital agriculture practices have started to play 
an important role in plant breeding studies to increase efficiency and speed up decision-making 
processes (Hickey et al., 2017). 

In plant breeding studies, modelling techniques are especially common, particularly in the areas 
such as genomic selection, phenotype prediction, and environment-genotype interaction analysis 
(Crossa et al., 2017). The use of genomic data enables a better understanding of complex agricultural 
systems and more accurate predictions in plant breeding research. For this purpose, machine learning-
based algorithms have become a vital instrument, especially for the evaluation of complicated 
environmental and genetic data (González-Camacho et al., 2018). The application of these methods, 
combined with precision agriculture technologies and big data analysis in plant breeding, offers 
significant opportunities to enhance productivity (Bramley & Ouzman, 2019). 

Genomic selection (GS) is a method that allows plant breeders to predict traits using a large 
number of molecular markers to identify target phenotypes. This method offers significant time and 
cost savings by reducing the need to evaluate a large number of candidates in breedings programs 
(Meuwissen et al., 2001). Furthermore, machine learning techniques have been extensively used to 
improve the efficiency of genomic selection (Heslot et al., 2012). Machine learning algorithms such as 
support vector machines (SVM), random forests (RF), and artificial neural networks (ANN) have been 
widely used in predicting phenotypic traits and evaluating genotype-environment interactions (Morota 
& Gianola, 2014). 

In plant breeding, the analysis of environment-genotype interactions is crucial for predicting 
crop performance, particularly under different environmental conditions. In this regard, modelling 
approaches such as multiple regression models, principal component analysis (PCA) and AMMI 
(Additive Main Effects and Multiplicative Interaction) analysis are frequently used in plant breeding 
studies (Piepho, 2000; Gauch, 2013). Recent advancements in artificial intelligence and machine 
learning techniques have significantly improved the analysis of these interactions, enabling faster and 
more effective outcomes in breeding programs (Spindel et al., 2015). For instance, deep learning 
approaches have emerged as powerful tools for uncovering complex relationships between genetic 
and environmental data (Montesinos-López et al., 2021). 

Modelling strategies also contribute to ensuring sustainability in plant breeding. These 
strategies have the potential to enhance agricultural productivity by addressing environmental 
conditions and genetic factors together (Jannink et al., 2010). Specifically in the framework of climate 
change, genetic breeding studies are becoming more significant in order to increase the resilience of 
plants against environmental stresses (Fisher et al., 2015). In this scope, models that model 
environmental stress factors and predict how plants respond to these conditions will play an important 
role in the future of plant breeding. 
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As a conclusion, the use of modelling strategies in plant breeding goes beyond traditional 
methods and offers an approach that is faster, more accurate and can effectively use multi-
dimensional input data. These strategies have great potential to provide sustainability of agricultural 
production, to adapt to environmental variability and to make it possible to make the best use of 
genetic potential (Jannink et al., 2010). 

 

2. Historical Development of Modelling Strategies 
Plant breeding is a science based on various strategies that have been developed throughout 

history to increase agricultural productivity and ensure food security. Modelling strategies in plant 
breeding, especially in the last century, have played an important role in modern agricultural practices 
and brought many innovations. The first modelling strategies in plant breeding date back to humanity's 
introduction to agriculture. Traditional plant breeding started with farmers selecting the best-
performing plants to produce crops. This selection method was based purely on observational data 
and did not involve any numerical modelling strategies. However, it is known that during this period, 
people carefully monitored various factors in order to improve plant traits. 

The work by Gregor Mendel on pea plants founded the genetic principles in plant breeding, 
allowing the development of scientific bases for modelling approaches. Mendel's laws demonstrated 
that mathematical models are essential for understanding the inheritance of genetic diversity. This 
later led to advanced prediction and selection models being developed in the field of plant breeding. 
In the course of the 20th century, quantitative genetics was developed fully, and much of the 
fundamental theoretical framework that enabled the use of mathematical approaches in modelling 
complex inherited traits got its place in plant breeding—mainly by the work of Fisher and Wright. 
Fisher's idea of 'Genetic Analysis of Variance' made it possible to apply statistical modelling methods 
in plant breeding and helped breeders in estimating various environmental and genetic effects 
simultaneously. 

By the middle of the 20th century, advances in computer technologies enabled a more rapid and 
advanced modelling approaches in the plant breeding context. In this regard, computer-assisted 
modelling in forecasting genetic algorithms and selection patterns across the quadruplicate came into 
being. By around the same period, computer-assisted simulations became a very crucial aspect in 
analysing genetic information and creating new varieties. 

Starting from the 2000s, GS has revolutionized the art of plant breeding altogether. Genomic 
selection is based on the use of abundant genetic markers for predicting an organism's phenotypic 
performance. This process has been advanced substantially by integrating artificial intelligence along 
with machine learning techniques in agriculture. 

Of these machine-learning techniques, applications in the prediction of complex phenotypic 
traits have especially been done using artificial neural networks (ANNs), support-vector machines 
(SVMs), and random forests. These modern approaches allow for faster and more accurate results 
when compared to traditional breeding methods. Big data has become very important in plant 
breeding nowadays. New modelling methods bring together and mix phenotypic, genotypic, and 
environmental data to make better predictions. Combined models such as these reduce risks in plant 
breeding and help to breed more efficiently productive crops. Cloud computing technologies for big 
data analysis have lowered the time used in analysing complicated datasets within plant breeding and 
provided breeders with much more flexibility. This technology is used for such purposes as developing 
predictive models and optimizing crop quality, among others, in plant breeding. 

Plant breeding strategies are changing quickly. Applications of artificial intelligence and machine 
learning will be very important for the solution of increasingly complex farming problems of the future. 
But issues of quality in data used in such models and uncertainty surrounding environmental factors 
in modelling remain huge unsolved issues. The historical development of modelling strategies in plant 
breeding ranges from old observational approaches to up-to-date AI-based methods. Knowledge of 
genetic information, aided by computer-aided analysis and integration of big data, has helped produce 
more productive and resistant varieties, usually in agriculture. This area is only going to see more 
substantial impacts of AI and data analytics in the future. 
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3.Basic Modelling Techniques Used in Plant Breeding 
Plant breeding uses modern technologies and scientific methods to increase genetic potential 

and improve productivity, disease resistance and environmental adaptation of plants. Basic modelling 
techniques are an integral part of this process, enabling genetic engineers and researchers to better 
understand plant traits and make effective selection. 

 
3.1. Genomic Selection (GS): Genomic selection utilizes statistical models to predict phenotypic 

traits using genotypic data of individuals. This technique is particularly used in large data sets and in 
the selection of complex traits. Genomic selection is an effective method to accelerate genetic gain 
and shorten the breeding process by analyzing comprehensive genomic and phenotype data 
(Meuwissen et al., 2001). 

3.2. Marker Assisted Selection (MAS): Marker-assisted selection is a technique that accelerates 
genetic selection by using the association between a specific genetic marker and one or more traits. It 
is particularly used in the selection of traits such as single gene disease resistance or productivity. MAS 
facilitates the elimination of unwanted alleles by enabling direct selection of targeted genes (Hospital, 
2009). 

3.3. Phenotyping and High-Resolution Imaging: High-resolution phenotyping using advanced 
imaging technologies and sensors enables precise and scalable assessment of morphological and 
physiological characteristics of plants. This technique is particularly used to understand genotype-
environment interactions and to monitor plant responses under stress. High-resolution phenotyping 
increases the accuracy and speed of genetic improvements (Furbank and Tester, 2011). 

3.4. Machine Learning and Artificial Intelligence: Machine learning techniques are used to 
predict plant traits by learning from large and complex data sets. Algorithms such as neural networks, 
support vector machines and decision trees have been effective in modelling phenotypic traits and the 
consequences of genetic engineering interventions. Artificial intelligence enables rapid and accurate 
analysis of traits in plant breeding, especially yield, disease resistance and response to environmental 
stresses (Crossa et al., 2017). 

3.4.1. Regression Models 
Regression analysis constitutes one of the primary modelling methodologies frequently 

employed in the domain of plant breeding. The application of simple and multiple regression analyses 
is deemed appropriate for investigations aimed at elucidating the impacts of genetic and 
environmental variables on plant yield (Montgomery and Peck, 2012). This analytical technique 
facilitates the formulation of predictions by establishing linear correlations between genotype and 
phenotype throughout the breeding process. In an investigation conducted by Smith et al. (2015), 
regression models were employed to forecast yield enhancements of legumes across varying planting 
densities. Within the context of this research, regression analysis proved to be a potent instrument for 
comprehending the responses of diverse genotypes to environmental conditions. 

3.4.2. Decision Trees and Random Forest 
Decision trees are effective methods for determining the relationships between genetic and 

environmental data and for selecting suitable plant varieties. Decision trees allow data to be classified 
by branching through simple rules (Breiman, 2001). The Random Forest algorithm is a method created 
by combining a large number of decision trees and provides genotype prediction with higher accuracy. 
In a study conducted by Martin et al. (2018) on legumes, it was aimed to identify genotypes resistant 
to drought conditions using the Random Forest algorithm. This technique has provided great success 
in understanding the responses of legumes to environmental stress factors. 

3.4.3. Support Vector Machines (SVM) and Support Vector Regression (SVR) 
Support Vector Machines (SVM) is one of the powerful modelling techniques used in plant 

breeding for classification and regression purposes. SVM is especially preferred for its high accuracy in 
complex data sets (Vapnik, 1998). This method allows the data to be divided into certain classes and 
the boundaries to be determined optimally. Jones et al. (2019) used SVM models to predict yield traits 
of chickpea plants under environmental stress conditions. The study showed that SVM has high 
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accuracy in yield prediction and resilience to environmental conditions in legume species. SVR is a 
version of support vector machines used for regression and is widely used for yield prediction in plant 
breeding. This method is used to achieve high accuracy, especially in data sets, and to minimize the 
bias of predictions (Smola and Schölkopf, 2004). This technique allows for precise yield estimation in 
plant breeding processes. 

3.4.5. Artificial Neural Networks (ANN) 
Artificial neural networks have been used as a powerful modelling tool for predicting plant traits. 

Thanks to its ability to process and learn from large data sets, ANN is an effective tool for analyzing the 
complexity of gene-environment interactions. For example, ANN models used to predict water stress 
tolerance in wheat have been used to identify genotypes that will maximize yield under water stress 
conditions (Al-Hashimi et al., 2019). In addition, in legume breeding, artificial neural networks are 
effectively used to analyze genetic data under different environmental conditions. Singh et al. (2020) 
obtained high accuracy predictions using ANN model for yield prediction in lentil plant. 

3.4.6. Genetic Algorithms 
Genetic algorithms are an optimization method inspired by the principles of biological evolution 

and are used in plant breeding to determine the most suitable genotypes (Goldberg, 1989). This 
method allows increasing genetic diversity in plant breeding and selecting individuals with desired 
traits. Wang et al. (2017) conducted a study in which genetic algorithms were used to identify 
individuals with the highest yield potential among chickpea genotypes. This study showed that genetic 
algorithms are an effective tool for selecting suitable candidates in plant breeding. 

3.4.7. Bayesian Networks 
Bayesian networks are a technique used in plant breeding to model probabilistic relationships 

between genetic and environmental factors. This method is suitable for exploring dependencies 
between different variables and making probability predictions using these dependencies (Heckerman, 
1997). Especially in cases where environmental conditions and genetic factors need to be evaluated 
together, Bayesian networks make a great contribution to the breeding process. 

3.4.8. K-Nearest Neighbor (KNN) 
The K-nearest neighbor algorithm (KNN) is a simple but effective modelling technique that 

performs classification and regression based on the proximity of data (Cover and Hart, 1967). In plant 
breeding, the KNN algorithm is widely used to evaluate genetic similarities and phenotypic traits. Patel 
et al. (2019) used KNN algorithm to determine the tolerance of chickpea varieties to various 
environmental conditions. The results of the study showed that KNN was successful in analyzing the 
responses of similar genotypes to environmental conditions. 

3.4.9. Deep Learning 
Deep learning consists of multilayer artificial neural networks and is highly effective at learning 

complex patterns and relationships from large data sets. In plant breeding, deep learning models are 
used to automatically extract phenotypic traits, especially from high-resolution image data, and to 
identify differences between genotypes (Lee et al., 2018). 

3.4.10. Genetic Algorithms and Optimization Methods 
Genetic algorithms and other optimization methods are used in plant breeding to select the 

most suitable genotypes (Goldberg, 1989). These methods optimize genetic diversity in breeding 
studies and ensure the selection of the most suitable individuals. Wang et al. (2017) conducted a study 
in which genetic algorithms were used to identify individuals with the highest yield potential among 
chickpea genotypes. This study showed that genetic algorithms are an effective tool for selecting 
suitable candidates in plant breeding. 

These technologies play a critical role in solving complex problems in the plant breeding process, 
increasing the speed and accuracy of genetic improvements. Machine learning and artificial 
intelligence enable genetic engineers to make more informed decisions and allow for large-scale 
improvement of plant traits. 

5.Simulation Models: Simulation models are used to evaluate the genetic gain and demographic 
effects of specific breeding strategies. These models predict the genetic structure and evolution of 
plant populations under various scenarios, providing critical information for the design of breeding 
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programs. Simulation techniques also provide important insights into issues such as genetic diversity 
and conservation of gene flow (Wang et al., 2012). 

 

4. Big Data and Machine Learning Applications 
Big data and machine learning have revolutionized plant breeding (Bishop, 2006). In this section, 

the applications of big data analysis and machine learning models in plant breeding will be explained 
in detail. Especially in legume species, the analysis of large data sets and the evaluation of these data 
are carried out with machine learning techniques. Patel et al. (2021) used the Gradient Boosting 
method on a large data set to estimate growth and yield parameters of legumes. The results of the 
study revealed that this technique is an effective tool for big data analysis in plant breeding. 

4.1. Model Validation and Performance Evaluation in Plant Breeding 
Evaluating the effectiveness of modelling strategies is very important in plant breeding because 

the accuracy and reliability of the models developed directly affect the success of breeding efforts. The 
process of model validation and performance evaluation aims to test how well the model predicts and 
performs on different data sets. This process is critical to determine whether the model is over- or 
under-learning and its generalizability. 

4.2. Model Validation and its Importance 
Model validation is the process of evaluating the success of the model on different data sets. 

Usually, the data set is divided into two: training and test. The training set is used for the model to 
learn, while the test set is used to evaluate the model's success on data it has not seen before. This 
method is important to determine whether the model has overfitting or underfitting problems (Bishop, 
2006). 

4.3. Performance Evaluation Metrics 
Performance evaluation metrics are used to measure the accuracy and error rate of the model. 

The main performance evaluation metrics used in plant breeding studies are. 
4.3.1. Mean Squared Error (MSE) 
MSE measures the error rate by averaging the squares of the differences between the model's 

predicted values and the actual values. MSE is a sensitive measure of the magnitude of error values, 
as it penalizes large errors in the predictions more (Chai and Draxler, 2014). 

4.3.2. Root Mean Squared Error (RMSE) 
RMSE is the square root of MSE and presents the magnitude of prediction errors on a more 

understandable scale. RMSE is widely used to assess the overall performance of the model and 
indicates the accuracy of the model in yield predictions (Chai and Draxler, 2014). 

4.3.3. Mean Absolute Error (MAE) 
MAE averages the absolute values of the differences between predicted values and actual 

values. This metric helps to understand the performance of the model by directly measuring the error 
rate of the model and is particularly useful in the absence of large errors (Willmott and Matsuura, 
2005). 

4.3.5. R Square (R²) Value 
R² refers to the proportion of variance of the model explained by the independent variables. The 

closer the R² value is to 1, the better the fit of the model. In plant breeding, it is used to evaluate the 
effects of genetic and environmental variables on plant yield (Montgomery and Peck, 2012). 

4.3.6. Mean Absolute Percentage Error (MAPE) 
MAPE gives the percentage error of the predicted values compared to the actual values. This 

metric expresses the error rate of the model as a percentage and enables comparisons to be made on 
data at different scales (Makridakis and Hibon, 2000). 
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5. Model Validation Methods 
5.1. K-Fold Cross Validation 
K-fold cross-validation divides the data set into K equal parts and one part at a time is used as 

the test set and the remaining K-1 parts are used as the training set. This method is used to increase 
the generalizability of the model and to understand how it performs in different data sets (Kohavi, 
1995). 

5.2. Bootstrap Method 
Bootstrap allows us to create many different training and test sets by taking random samples 

from the data set. This method is used to assess model accuracy and improve model performance on 
small data sets (Efron and Tibshirani, 1993). 

Lee et al. (2016) evaluated the accuracy of ANN models to model the response of legumes to 
environmental stress conditions and proved the effectiveness of the model using criteria such as RMSE 
and MAE. These metrics are critical to evaluate the performance of the model developed in plant 
breeding and to understand how well the model can generalize to different conditions. 

 

6. Application Areas and Success Cases 
Modelling strategies are of increasing significance in the field of plant breeding with the 

integration of technological innovations and scientific progress. These strategies in modern agronomy 
are making genetic improvement processes faster, scalable and efficient, increasing the capacity to 
provide solutions to various challenges. This chapter presents practical applications of genetic 
modelling, artificial intelligence, and advanced imaging techniques and provides successful examples 
of how these technologies have been integrated into real-world agricultural practices. Modelling 
strategies used in plant breeding have been influential in many different areas, from genetic diversity 
conservation to disease management. Advanced statistical methods and computer simulations allow 
breeders to more rapidly develop plant varieties with specific traits. These technologies also predict 
plant performance under environmental stress conditions, facilitating the selection of more resistant 
and adaptive varieties. 

Concrete examples of how these methods have been successfully applied in agriculture are 
highlighted, illustrating the breadth of applications of modelling strategies in plant breeding and the 
many advantages of these strategies. The integration of innovative technologies into agricultural 
practices increases the speed and efficiency of genetic enhancements and contributes to the 
maintenance of global agricultural production. 

6.1. Genomic Selection Applications: Genomic selection techniques have been used for genetic 
improvement of legumes, especially species such as lentils and chickpeas. This method is important to 
better understand genetic variation and to improve productivity traits. For example, one study used 
genomic selection in chickpea to develop high-yielding and disease-resistant varieties in a short time 
(Roorkiwal et al., 2018). In addition, especially in large-scale crops such as maize and wheat, genomic 
selection has accelerated selection processes and maximized genetic gain compared to traditional 
breeding methods. For example, in one study, selection on yield traits of maize using genomic selection 
accelerated the improvement process by 25% and increased yields by up to 20% (Bernardo, 2016). 

6.2. Phenotyping and High-Resolution Imaging: AI-enabled high-resolution imaging techniques 
are used to monitor plant growth and disease and stress responses in real time under field conditions. 
High-resolution phenotyping techniques are used to study traits such as adaptation to stress conditions 
and disease resistance in legume crops. For example, high-resolution imaging techniques applied to 
lentil plants have been used to understand physiological responses under water stress and to identify 
genotypes that are best adapted to these stress conditions (Kumar et al., 2020). In another study, they 
reported that AI-assisted imaging in potato plants detects disease symptoms at an early stage and thus 
increases the effectiveness of disease management strategies (Quirós Vargas et al., 2019). 

6.3. Disease Prediction with Machine Learning: Machine learning models have been used as an 
effective tool in legume disease management. They have been used for early detection and spread 
prediction of common legume diseases such as fusarium wilt and root rot. These models analyze the 
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relationships between disease agents and environmental factors over large data sets and contribute 
to the development of management strategies (Srivastava et al., 2019). 

6.4. Identification of Optimal Genotypes under Salt Stress: Predictive modelling approaches 
used to identify wheat genotypes resistant to salt stress have enabled the selection of more resistant 
varieties by predetermining the response of genotypes to environmental stresses. This approach 
contributes to global food security by increasing the feasibility of agriculture in saline soils (Zhang et 
al., 2021). 

6.5. Modelling Legume Performance under Drought Conditions: Artificial intelligence and 
machine learning methods have been used to predict the resilience of legume varieties to abiotic stress 
conditions such as drought. Artificial neural networks and support vector machines have been used to 
model genetic adaptations to water stress in species such as lentils and beans and to optimize their 
efficient use of water resources (Gupta et al., 2017). 

6.6. Simulation and Management of Disease Spread: Simulation models are used to predict the 
spread of legume diseases and develop effective management strategies. For example, stochastic 
simulation models have been used to assess the resistance of chickpea varieties to Ascochyta blight 
(Ascochyta rabiei). These models have helped to optimize disease control strategies by assessing 
disease development in combination with environmental factors (Singh et al., 2018). 

6.7. Assessment of Genetic Diversity and Improvement Potential: Large-scale genomic data 
analysis for the assessment of genetic diversity and improvement potential is an important area of 
research in legumes. Multi-locus genomic selection models have been used to understand the genetic 
basis of complex traits such as disease resistance and yield traits in soybean and other legumes. These 
studies have provided valuable information to conserve genetic diversity and promote sustainable 
agricultural practices (Zhao et al., 2019). 

 

7. Conclusion 
 
7.1. Future Directions and Potential Research Areas 
In plant breeding, innovative modelling strategies are of great importance to meet the 

increasing demands of global food security and to combat the impacts of climate change. In recent 
years, the integration of advanced statistical modelling techniques to understand genomic selection 
and phenotypic plasticity has significantly improved the accuracy and efficiency of breeding programs, 
with particular emphasis on building more comprehensive predictive models by integrating multiple 
omics data. These models provide a better understanding of the genetic makeup of plants and their 
interactions with environmental stressors, enabling the development of more resistant and productive 
plant varieties (Heffner et al., 2009; Cobb et al., 2013). The application of machine learning and 
especially deep learning technologies opens new doors in modelling complex genetic architectures and 
environmental interactions. 

Convolutional neural networks (CNN) and recurrent neural networks (RNN) have been used in 
plant breeding, especially for phenotype prediction and better understanding of genetic variation 
(Montesinos-López et al.) AI-assisted image processing and high-resolution phenotyping techniques 
are used to instantaneously monitor and model the growth and development of plants under field 
conditions. These technologies allow breeders to carry out selection processes more quickly and 
accurately, while also providing a better understanding of plant responses to environmental changes 
(Araus et al., 2018). 

Innovative modelling strategies provide the cornerstones for sustaining and improving scientific 
progress in plant breeding. Comprehensive modelling of genetic and environmental factors enables 
breeders to develop more resilient and productive plant varieties. These technologies have the 
potential to support biodiversity by maintaining and enhancing genetic diversity, while at the same 
time increasing sustainability in agricultural production. Advanced technology and deep learning 
algorithms enable the extraction of complex patterns from large data sets, contributing to more 
accurate prediction of plant traits. These advances not only improve the effectiveness of breeding 
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programs, but also enable the development of new strategies to address global challenges such as 
climate change. 

Finally, the modelling strategies and effective use of technologies highlighted in this chapter 
illuminate new research avenues for the future of plant breeding and inspire the scientific community 
in this field. By further integrating these technologies, future work can further improve plant breeding 
processes and provide innovative solutions that support food security. The continuous evolution of 
modelling strategies in plant breeding will be at the forefront of sustainable agricultural practices and 
environmental adaptation. We believe that these dynamic and innovative approaches will further 
accelerate advances in the fields of plant breeding and agricultural biotechnology and contribute to a 
broad range of socio-economic contributions. 
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