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ABSTRACT 

This study has been prepared in the theory of approximation, which has an important place in the 

fields of application. In this paper, a modification of operators of the Gadjiev-Ibragimov type that 

preserves test functions will be described. The paper is about Kantorovich-type modification of a 

generalization of Gadjiev-Ibragimov operators. It is aimed to present a new materials to researchers 

who will conduct applied studies by examining the uniform convergence of this of the new operator 

in integral form, whose terms are functions defined on C[0,1].  

Based on the Korovkin approximation theorem, properties of convergence for these operators and 

then some direct theorems will be given.The rate of convergence of these operators will be 

calculated with the help of the modulus of continuity by using the classical second order moments. 

By using the definition created by Ozarslan and Aktuglu, the approximation theorem for functions 

from the Lipschitz class will be given and the approximation properties of these modified operators 

in weighted spaces will also be examined. Also, properties of approximation will be demonstrated 

with graphics and numerical calculations using the Maple program.  

Keywords: Kantorovich Operators, Gadjiev-Ibragimov Type Operators, Korovkin Theorems. 

 

ÖZET 

Bu çalışma, uygulama alanlarında önemli bir yere sahip olan yaklaşım teorisinde hazırlanmıştır. Bu 

çalışmada, test fonksiyonlarını koruyan Gadjiev-Ibragimov tipi operatörlerin bir modifikasyonu 

tanımlanacaktır. Makale, Gadjiev-Ibragimov operatörlerinin bir genellemesinin Kantorovich tipi 

modifikasyonu hakkındadır. Terimleri C[0,1] üzerinde tanımlanan fonksiyonlar olan bu yeni 

operatörün integral formda düzgün yakınsaklığı incelenerek; uygulamalı çalışmalar yapacak 

araştırmacılara yeni bir materyal sunulması amaçlanmaktadır. 

Korovkin yaklaşım teoremine dayalı olarak, bu operatörler için yakınsama özellikleri ve ardından 

bazı doğrudan teoremler verilecektir. Bu operatörlerin yakınsama oranları, klasik ikinci dereceden 

momentler kullanılarak süreklilik modülü yardımıyla hesaplanacaktır. Özarslan ve Aktuğlu’ nun 

oluşturduğu tanım kullanılarak Lipschitz sınıfından fonksiyonlar için yaklaşım teoremi verilerek bu 

modifiye operatörlerin ağırlıklı uzaylarda yaklaşım özellikleri de incelenecektir. Ayrıca, yakınsaklık 

özellikleri Maple programı kullanılarak grafikler ve sayısal hesaplamalar ile gösterilecektir. 

Anahtar Kelimeler: Kantorovich Operatörleri, Gadjiev-Ibragimov Tipi Operatörler, Korovkin 

Teoremi. 

 

1. INTRODUCTION 

Approximation theory is concerned with the ability to approximate functions by simpler and more 

easily calculated functions. In recent years the number of branches related to approximation theory 

has been increasing steadly. 
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Accordingly, many generalizations of linear positive operators have been studied, one of them is the 

Kantorovich modification. The subject of Kantorovich operators is still the focus of many 

researchers. After defining a new operator, making Kantorovich generalizations of that operator is 

an expected modification by researchers following the studies in that field. For this purpose a 

generalization of the operator defined in (Gonul and Coskun, 2013) will be made in this sense and 

important approximation properties will be given now.  

In 1970, the sequence of linear positive operators named after them was introduced in (Gadjiev and 

Ibragimov,1970). This operator is called Ibragimov-Gadjiev or Gadjiev-Ibragimov operators in 

literature. Here, the second expression will be used. After then, a lot of generalizations of Gadjiev- 

Ibragimov operators are studied for example in (Doğru, 1997), (Ispir et al, 2008), (Gonul and 

Coskun, 2012). Apart from these, Aral, proved that derivatives of Gadjiev-Ibragimov operators 

converges to derivatives of the functions in (Aral, 2005). Some convergence properties of 

Durrmeyer versions of these operators are defined in (Ulusoy et.al. 2015). In (Gonul Bilgin and 

Coskun, 2018), the approximation properties of Gadjiev-Ibragimov type operators are compared 

and then is gave main properties of a two dimensional version of these operators in (Gonul Bilgin 

and Ozgur, 2019). q-generalizations of the classical version of this operators are given in (Herdem 

and Buyukyazici 2018). 

Here, the space of continuous functions defined on [0,1]; with 𝐶[0,1] and the space of Lebesgue 

integrable functions defined in the same interval will be denoted by 𝐿1[0,1]. 

Let's remember the operator whose properties are given in (Gonul and Coskun, 2013). 

𝐿𝑛(𝑓, 𝑥) = ∑ 𝑓 (
𝜈

𝛽𝑛  
)  

∞

𝜈=0

𝐾𝑛,𝑣(𝑥)
(−𝑎𝑛)𝑣

𝑣!
                                                                                                   (3) 

Lemma 1.1 For every 𝑛 = 0, 1, 2, … and for all 𝑥 ∈ [0,1], 𝐿𝑛(𝑓, 𝑥) satisfy the following equalities: 

𝑖) 𝐿𝑛(1, 𝑥) = 1, 

𝑖𝑖) 𝐿𝑛(𝑡, 𝑥) =
𝛼𝑛

𝛽𝑛
𝑛𝑥, 

𝑖𝑖𝑖) 𝐿𝑛(𝑡2, 𝑥) =
𝛼𝑛

2𝑛(𝑛 + 𝑚)𝑥2

𝛽𝑛
2 +

𝛼𝑛𝑛𝑥

𝛽𝑛
2 , 

𝑖𝑣) 𝐿𝑛(𝑡3, 𝑥) = {(
𝛼𝑛

𝛽𝑛
)

3

𝑛3 + 3 (
𝛼𝑛

𝛽𝑛
)

3

𝑛2𝑚 + 2 (
𝛼𝑛

𝛽𝑛
)

3

𝑛𝑚2} 𝑥3 + {
3

𝛽𝑛
(

𝛼𝑛

𝛽𝑛
)

2

 𝑛2 

+
3

𝛽𝑛
(

𝛼𝑛

𝛽𝑛
)

2

 𝑛𝑚} 𝑥2 +
1

𝛽𝑛
2 (

𝛼𝑛

𝛽𝑛
)  𝑛𝑥 , 

𝑣) 𝐿𝑛(𝑡4, 𝑥) = {(
𝛼𝑛

𝛽𝑛
)

4

𝑛4 + 6 (
𝛼𝑛

𝛽𝑛
)

4

𝑛3𝑚 + 11 (
𝛼𝑛

𝛽𝑛
)

4

𝑛2𝑚2 + 6 (
𝛼𝑛

𝛽𝑛
)

4

𝑛𝑚3}𝑥4  

+ {
6

𝛽𝑛
(

𝛼𝑛

𝛽𝑛
)

3

𝑛3 +
18

𝛽𝑛
(

𝛼𝑛

𝛽𝑛
)

3

𝑛2𝑚 +
12

𝛽𝑛
(

𝛼𝑛

𝛽𝑛
)

3

𝑛𝑚2} 𝑥3 

+ {
7

𝛽𝑛
2 (

𝛼𝑛

𝛽𝑛
)

2

 𝑛2 +  
7

𝛽𝑛
2 (

𝛼𝑛

𝛽𝑛
)

2

 𝑛𝑚 } 𝑥2  +
1

𝛽𝑛
3 (

𝛼𝑛

𝛽𝑛
)  𝑛𝑥.                                           

 

The design of the next sections is as follows. First of all, the Kantorovich generalization of the (3) 

operator will be defined and the equations related to the test functions will be given. After it has 

been shown that this operator satisfies a Korovkin type theorem, the approximation theorem for 

weighted spaces will be proved by using the results obtained in the previous section. In the fourth 
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chapter, rate of convergence using modulus of continuity and graphical representation of the 

approximation will be made. 

 

2. METHODS AND MATERIALS 

In this section, firstly, the operator will be defined and the Korovkin type approximation theorem 

will be proved for this operator. 

 

Definition 2.1 For (𝑐𝑛) , (𝑑𝑛); let lim
𝑛→∞

𝑑𝑛 =  ∞ , lim
𝑛→∞

 
𝑐𝑛

𝑑𝑛
= 0 and lim

𝑛→∞
𝑛 

𝑐𝑛

𝑑𝑛
 = 1. In this case, a 

modification of Kantorovich-type Gadjiev-Ibragimov operators, give as follows. 

𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑓(𝑢)𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

                                                                              (4) 

Here 𝑁𝑛,𝑟(𝑥) is the function depending on the parameters 𝑟 and 𝑛 to get the following conditions: 

i) For every 𝑛, 𝑟 = 0, 1, 2, … and for all 𝑥 ∈ [0,1] 

(−1)𝑟𝑁𝑛,𝑟(𝑥) ≥ 0.   

ii) For all 𝑥 ∈ [0,1], 

∑ 𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
  = 1.

∞

𝑟=0

 

iii) 𝑁𝑛,𝑟(𝑥) =  −𝑛𝑥𝑁𝑛+𝑝,𝑟−1(𝑥), 

for any 𝑥 ∈ [0,1] where 𝑛 + 𝑝 is natural number and 𝑝 is a constant independent of 𝑟. 

 

Lemma 2.1 

The following equations are valid for the operator 𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥); 

i) 𝐿𝑛
𝒦,𝒢,ℐ(1, 𝑥) = 1, 

ii) 𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥) =

1+2𝑛𝑥𝑐𝑛

2𝑑𝑛
, 

iii) 𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) =

𝑐𝑛
2𝑛(𝑛+𝑝)𝑥2

𝑑𝑛
2 + 2

𝑐𝑛𝑛𝑥

𝑑𝑛
2 +

1

3𝑑𝑛
2 .  

 

Proof 

From definition of operators  

𝐿𝑛
𝒦,𝒢,ℐ(1, 𝑥) = 1 

can be obtain easily. 

Then, for 𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥), since (𝑛 + 𝑝) ∈ ℕ,  

𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑢𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛
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=
𝑑𝑛

2
∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
)

2

− (
𝑟

𝑑𝑛
)

2

] 

= ∑
𝑟

𝑑𝑛
  

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
+

1

2𝑑𝑛
∑  

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
                          

=
1 + 2𝑛𝑥𝑐𝑛

2𝑑𝑛
. 

Similarly, using definition of operators 

𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑢2𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

=
𝑑𝑛

3
∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
)

3

− (
𝑟

𝑑𝑛
)

3

] 

=
𝑑𝑛

3
∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[
3𝑟2 + 3𝑟 + 1

𝑑𝑛
3 ] 

= ∑   (
𝑟

𝑑𝑛
)

2
∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
+

1

𝑑𝑛
∑

𝑟

𝑑𝑛

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
+

1

3𝑑𝑛
2 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
 

= 𝐿𝑛(𝑡2, 𝑥) +
1

𝑑𝑛
𝐿𝑛(𝑡, 𝑥) +

1

3𝑑𝑛
2 𝐿𝑛(1, 𝑥) 

=
𝑐𝑛

2𝑛(𝑛 + 𝑝)𝑥2

𝑑𝑛
2 + 2

𝑐𝑛𝑛𝑥

𝑑𝑛
2 +

1

3𝑑𝑛
2 

is obtained. 

Now will be given the following basic properties needed to work on the main results.  

 

Lemma 2.2 

The 𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) satisfy the following equations; 

𝑖) lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(1, 𝑥) − 1‖

𝐶[0,1]
= 0                                                              

𝑖𝑖) lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥) − 𝑥‖

𝐶[0,1]
= 0                                                               

𝑖𝑖𝑖) lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) − 𝑥2‖

𝐶[0,1]
= 0                                                               

Proof 

Using Lemma 2.1, 

lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(1, 𝑥) − 1‖

𝐶[0,1]
= 0                                                               

can be written. Definition of (𝑐𝑛) , (𝑑𝑛) and if Lemma 2.1 ii) is used again 

|𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥) − 𝑥| = |  

1 + 2𝑛𝑥𝑐𝑛

2𝑑𝑛
− 𝑥| = |𝑥 (

𝑛𝑐𝑛

𝑑𝑛
− 1) +

1

2𝑑𝑛
| 
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is written. So for all 𝑥 ∈ [0,1] and using lim
𝑛→∞

𝑛 
𝑐𝑛

𝑑𝑛
= 1; 

 |𝑥 (
𝑛𝑐𝑛

𝑑𝑛
− 1) +

1

2𝑑𝑛
| ≤ |

𝑛𝑐𝑛

𝑑𝑛
− 1|𝑥∈[0,1]

max + |
1

2𝑑𝑛
| 

is obtained. Then,  

lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥) − 𝑥‖

𝐶[0,1]
≤ lim

𝑛→∞
|
𝑛𝑐𝑛

𝑑𝑛
− 1| + lim

𝑛→∞
|

1

2𝑑𝑛
| = 0 

is geting. 

Finally, the next equation from the definition of 𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) is valid. 

|𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) − 𝑥2| = |[

𝑐𝑛
2𝑛(𝑛 + 𝑝)𝑥2

𝑑𝑛
2 + 2

𝑐𝑛𝑛𝑥

𝑑𝑛
2 +

1

3𝑑𝑛
2] − 𝑥2| 

= |𝑥2 (
𝑐𝑛

2

𝑑𝑛
2 𝑛(𝑛 + 𝑝) − 1) + 2𝑛

𝑐𝑛

𝑑𝑛
2 𝑥 +

1

3𝑑𝑛
2|. 

By definition of the norm in the studied space, 

 |𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) − 𝑥2| =𝑥∈[0,1]

max  |𝑥2 (
𝑐𝑛

2

𝑑𝑛
2 𝑛(𝑛 + 𝑝) − 1) + 2𝑛

𝑐𝑛

𝑑𝑛
2 𝑥 +

1

3𝑑𝑛
2|𝑥∈[0,1]

max  

 ≤ |(
𝑐𝑛

2

𝑑𝑛
2 𝑛(𝑛 + 𝑝) − 1)| + |2𝑛

𝑐𝑛

𝑑𝑛
2| + |

1

3𝑑𝑛
2| 

is obtained. Definition of  (𝑐𝑛), (𝑑𝑛) and since (𝑛 + 𝑝) ∈ ℕ, 

lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑡2, 𝑥) − 𝑥2‖

𝐶[0,1]
= 0                                                               

is shown. 

 

Theorem 2.1 

Let 𝑓 ∈ 𝐶[0,1], then for all 𝑥 ∈ [0,1] 

lim
𝑛→∞

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)‖

𝐶[0,1]
= 0. 

The proof is easily obtained from the above Lemma 2.2 and Korovkin's theorem. 

 

Lemma 2.3 

Let 𝑗 = 0,1,2  and j-th degree moment for the 𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥), is defined with 

ℳ𝑛,𝑗(𝑥) = 𝐿𝑛
𝒦,𝒢,ℐ

((𝑡 − 𝑥)𝑗 , 𝑥),  

then,  

ℳ𝑛,0(𝑥) = 1, 

ℳ𝑛,1(𝑥) = 𝑥 (
1 + 2𝑛𝑥𝑐𝑛

2𝑑𝑛
− 1) +

1

2𝑑𝑛
 

ℳ𝑛,2(𝑥) = (
𝑐𝑛

2𝑛(𝑛 + 𝑝)

𝑑𝑛
2 −

𝑛𝑐𝑛

𝑑𝑛
+ 1) 𝑥2 + (2

𝑐𝑛𝑛

𝑑𝑛
2 −

1

2𝑑𝑛
) 𝑥 +

1

3𝑑𝑛
2 

is obtained. 



 

Year 6 (2022)   Vol:21                                           Issued in MARCH, 2022                                                                 www.ejons.co.uk 

 

EJONS International Journal on Mathematic, Engineering and Natural Sciences  ISSN 2602 - 4136 

44 

Proof 

𝑡 − 𝑥 substituting in the operator; 

𝐿𝑛
𝒦,𝒢,ℐ(𝑡 − 𝑥, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ (𝑢 − 𝑥)𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

= 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ (𝑢 − 𝑥)𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

= 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[
1

2
(

𝑟 + 1

𝑑𝑛
)

2

− (
𝑟

𝑑𝑛
)

2

] − 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
) 𝑥 − (

𝑟

𝑑𝑛
) 𝑥] 

= ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!

1

2𝑑𝑛

(2𝑟 + 1) − 𝑥 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
 

= ∑
𝑟

𝑑𝑛

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
+

1

2𝑑𝑛
∑  

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
− 𝑥 

= 𝑥 (
1 + 2𝑛𝑥𝑐𝑛

2𝑑𝑛
− 1) +

1

2𝑑𝑛
 

is obtained. 

Using Lemma 2.1, 

𝐿𝑛
𝒦,𝒢,ℐ((𝑡 − 𝑥)2, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ (𝑢 − 𝑥)2𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

= 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ (𝑢 − 𝑥)2𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

= 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ (𝑢2 − 2𝑢𝑥 + 𝑥2)𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

=
𝑑𝑛

3
∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
)

3

− (
𝑟

𝑑𝑛
)

3

] 

−𝑥𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
)

2

− (
𝑟

𝑑𝑛
)

2

] 

+𝑥2 ∑  

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
 

= [
𝑐𝑛

2𝑛(𝑛 + 𝑝)𝑥2

𝑑𝑛
2 +

𝑐𝑛𝑛𝑥

𝑑𝑛
2 ] +

1

𝑑𝑛
[
𝑐𝑛𝑛𝑥

𝑑𝑛
] +

1

3𝑑𝑛
2 − 𝑥 [

1 + 2𝑛𝑥𝑐𝑛

2𝑑𝑛
] + 𝑥2 

= (
𝑐𝑛

2𝑛(𝑛 + 𝑝)

𝑑𝑛
2 −

𝑛𝑐𝑛

𝑑𝑛
+ 1) 𝑥2 + (2

𝑐𝑛𝑛

𝑑𝑛
2 −

1

2𝑑𝑛
) 𝑥 +

1

3𝑑𝑛
2 

is written Thus, the proof is complete. 
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3. RESULTS 

In this section, an important theorem will be given using the findings obtained in the previous 

section. 

Lemma 3.1  

For 𝐿𝑛
𝒦,𝒢,ℐ(𝑡3, 𝑥) and 𝐿𝑛

𝒦,𝒢,ℐ(𝑡4, 𝑥), the following equations are valid. 

𝐿𝑛
𝒦,𝒢,ℐ(𝑡3, 𝑥) = {(

𝑐𝑛

𝑑𝑛
)

3

𝑛3 + 3 (
𝑐𝑛

𝑑𝑛
)

3

𝑛2𝑝 + 2 (
𝑐𝑛

𝑑𝑛
)

3

𝑛𝑝2} 𝑥3 

+ {
3

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

2

 𝑛2 +
3

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

2

 𝑛𝑝 +
2

3
(

𝑐𝑛

𝑑𝑛
)

2 𝑛(𝑛 + 𝑝)

𝑑𝑛
} 𝑥2 

+ (
5

3

1

𝑑𝑛
2 (

𝑛𝑐𝑛

𝑑𝑛
)  +

1

𝑑𝑛
(

𝑛𝑐𝑛

𝑑𝑛
)) 𝑥 +

1

4𝑑𝑛
3, 

𝐿𝑛
𝒦,𝒢,ℐ(𝑡4, 𝑥) = {(

𝑐𝑛

𝑑𝑛
)

4

𝑛4 + 6 (
𝑐𝑛

𝑑𝑛
)

4

𝑛3𝑝 + 11 (
𝑐𝑛

𝑑𝑛
)

4

𝑛2𝑝2 + 6 (
𝑐𝑛

𝑑𝑛
)

4

𝑛𝑝3} 𝑥4  

+ {
8

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

3

𝑛3 +
24

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

3

𝑛2𝑝 +
16

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

3

𝑛𝑝2} 𝑥3 

+ {
13

𝑑𝑛
2 (

𝑐𝑛

𝑑𝑛
)

2

 𝑛2 +  
13

𝑑𝑛
2 (

𝑐𝑛

𝑑𝑛
)

2

 𝑛𝑝 +
2

𝑑𝑛
2

𝑐𝑛
2𝑛(𝑛 + 𝑝)

𝑑𝑛
2 } 𝑥2        

+ {
4

𝑑𝑛
3 (

𝑐𝑛

𝑑𝑛
)  𝑛 +

2

𝑑𝑛
2

𝑐𝑛𝑛

𝑑𝑛
2} 𝑥 +

1

5𝑑𝑛
4. 

 

Proof 

Using the definition of the operator and the following equation 

𝑠3 = 𝑠(𝑠 − 1)(𝑠 − 2) + 3𝑠2 − 2𝑠, 

𝐿𝑛
𝒦,𝒢,ℐ(𝑡3, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑢3𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

=
𝑑𝑛

4
∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
)

4

− (
𝑟

𝑑𝑛
)

4

] 

=
1

4𝑑𝑛
3 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[4𝑟3 + 6𝑟2 + 4𝑟 + 1] 

= 𝐿𝑛 ((
𝑟

𝑑𝑛
)

3

, 𝑥) +
2

3𝑑𝑛
𝐿𝑛 ((

𝑟

𝑑𝑛
)

2

, 𝑥) +
1

𝑑𝑛
𝐿𝑛 (

𝑟

𝑑𝑛
, 𝑥) +

1

4𝑑𝑛
3 𝐿𝑛(1, 𝑥). 

= 𝐿𝑛(𝑡3, 𝑥) +
2

3𝑑𝑛
𝐿𝑛(𝑡2, 𝑥) +

1

𝑑𝑛
𝐿𝑛(𝑡, 𝑥) +

1

4𝑑𝑛
3 𝐿𝑛(1, 𝑥). 

From the Lemma 1.1 the desired equality is shown. Similarly; 

𝐿𝑛
𝒦,𝒢,ℐ(𝑡4, 𝑥) = 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑢4𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛
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=
𝑑𝑛

5
∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[(

𝑟 + 1

𝑑𝑛
)

5

− (
𝑟

𝑑𝑛
)

5

] 

=
1

5𝑑𝑛
4 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
[5𝑟4 + 10𝑟3 + 10𝑟2 + 5𝑟 + 1] 

= 𝐿𝑛(𝑡4, 𝑥) +
2

𝑑𝑛
𝐿𝑛(𝑡3, 𝑥) +

2

𝑑𝑛
2 𝐿𝑛(𝑡2, 𝑥) +

1

𝑑𝑛
3 𝐿𝑛(𝑡, 𝑥) +

1

5𝑑𝑛
4 𝐿𝑛(1, 𝑥) 

= {(
𝑐𝑛

𝑑𝑛
)

4

𝑛4 + 6 (
𝑐𝑛

𝑑𝑛
)

4

𝑛3𝑝 + 11 (
𝑐𝑛

𝑑𝑛
)

4

𝑛2𝑝2 + 6 (
𝑐𝑛

𝑑𝑛
)

4

𝑛𝑝3} 𝑥4  

+ {
8

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

3

𝑛3 +
24

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

3

𝑛2𝑝 +
16

𝑑𝑛
(

𝑐𝑛

𝑑𝑛
)

3

𝑛𝑝2} 𝑥3 

+ {
13

𝑑𝑛
2 (

𝑐𝑛

𝑑𝑛
)

2

 𝑛2 +  
13

𝑑𝑛
2 (

𝑐𝑛

𝑑𝑛
)

2

 𝑛𝑝 +
2

𝑑𝑛
2

𝑐𝑛
2𝑛(𝑛 + 𝑝)

𝑑𝑛
2 } 𝑥2        

+ {
4

𝑑𝑛
3 (

𝑐𝑛

𝑑𝑛
)  𝑛 +

2

𝑑𝑛
2

𝑐𝑛𝑛

𝑑𝑛
2} 𝑥 +

1

5𝑑𝑛
4. 

Thus, the proof is complete. 

 

Now; the following well-known weighted spaces of functions which are defined on the (0, ∞]is 

considered. Let 𝜌(𝑥) = 1 + 𝑥2 weighted functions, 𝐾𝑓 > 0 be a positive constant depending of 𝑓. 

In the theorem that will be given from now on, 𝐵𝜌([0, ∞)), 𝐶𝜌([0, ∞)), 𝐶𝜌
𝑘([0, ∞)) notations, which 

are defined in the literature as follows, will be used.  The norm in this space is defined as 

‖𝑓‖𝜌  =  sup
[0,∞)

|𝑓(𝑥)|

𝜌(𝑥)
. 

𝐵𝜌([0, ∞)): = {𝑓: [0, ∞) → ℝ ∶  |𝑓(𝑥)| ≤ 𝐾𝑓𝜌(𝑥)}, 

𝐶𝜌([0, ∞)): = {𝑓 ∈ 𝐵𝜌(([0, ∞)): 𝑓  continuous} 

𝐶𝜌
𝑘([0, ∞)): = {𝑓 ∈ 𝐶𝜌([0, ∞)): lim

|𝑥|→∞

𝑓(𝑥)

𝜌(𝑥)
= 𝑘𝑓 < ∞} 

 

Theorem 3.1 

Let 𝑓 ∈ 𝐶𝜌
𝑘((0, ∞]) and  𝑓 ∈ 𝐿1[0,1]. In this case, 

lim
𝑛→∞

𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)|

1 + 𝑥2
= 0. 

Proof 

The proof will be made from Lemma 2.2, if the equation 

lim
𝑛→∞

𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑡𝑚, 𝑥) − 𝑥𝑚|

1 + 𝑥2
= 0, (for  𝑚 = 0,1,2)  

is shown, the proof is done. It is clear that 
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 lim
𝑛→∞

𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(1,𝑥)−1|

1+𝑥2 = 0.  

For   𝑚 = 1  

|𝐿𝑛
𝒦,𝒢,ℐ(𝑡, 𝑥) − 𝑥| = |𝑥 (

𝑛𝑐𝑛

𝑑𝑛
− 1) +

1

2𝑑𝑛
| 

and so, 

lim
𝑛→∞

 
𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑡, 𝑥) − 𝑥|

1 + 𝑥2
≤ lim

𝑛→∞
 |

𝑛𝑐𝑛

𝑑𝑛
− 1| + lim

𝑛→∞
 |

1

2𝑑𝑛
|. 

Thus 

 lim
𝑛→∞

 
𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑡,𝑥)−𝑥|

1+𝑥2 = 0.  

Finally, for   𝑡2 using Lemma 2.1 

𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑡2, 𝑥) − 𝑥2|

1 + 𝑥2
≤

𝑠𝑢𝑝

𝑥 ∈ [0, ∞) |
𝑥2

1 + 𝑥2
| |

𝑐𝑛
2𝑛(𝑛 + 𝑝)

𝑑𝑛
2 − 1| 

+
𝑠𝑢𝑝

𝑥 ∈ [0, ∞) |
𝑥

1 + 𝑥2
| [2

𝑐𝑛𝑛

𝑑𝑛
2] +

𝑠𝑢𝑝

𝑥 ∈ [0, ∞) |
1

1 + 𝑥2
|

1

3𝑑𝑛
2 

≤ |
𝑐𝑛𝑛

𝑑𝑛

𝑐𝑛(𝑛 + 𝑝)

𝑑𝑛
− 1| + [2

𝑐𝑛𝑛

𝑑𝑛
2] +

1

3𝑑𝑛
2. 

From the properties of (𝑐𝑛), (𝑑𝑛); 

lim
𝑛→∞

 
𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑡2, 𝑥) − 𝑥2|

1 + 𝑥2
= 0 

is getting. So, every 𝑓 ∈ 𝐶𝜌
𝑘((0, ∞]) 

lim
𝑛→∞

 
𝑠𝑢𝑝

𝑥 ∈ [0, ∞)
|𝐿𝑛

𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)|

1 + 𝑥2
= 0 

is obtained. 

 

4. DISCUSSION 

In this section, calculation of modulus of continuity, approximation properties for functions from 

the Lipschitz class and the graphical representation of the approximation will be made. 

 Theorem 4.1 Let 𝑓 ∈ 𝐶[0,1] then the inequality  

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)‖

𝐶[0,1]
≤ 𝑀ω (𝑓, √(𝑛

𝑐𝑛

𝑑𝑛

− 1)
2

 +
1

𝑑𝑛
) 

holds for sufficiently large 𝑛, where 𝑀 is a constant independent of 𝑛. 

|𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)| ≤ 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ |𝑓(𝑢) − 𝑓(𝑥)|𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛
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≤ 𝑑𝑛 ∑ ω(𝑓, 𝛿𝑛)𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ (1 +

|𝑢 − 𝑥|

𝛿𝑛
) 𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

∞

𝑟=0

 

≤ 𝑑𝑛ω(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[∑ 𝑁𝑛,𝑟(𝑥)

(−𝑐𝑛)𝑟

𝑟!
∫ |𝑢 − 𝑥|2𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

∞

𝑟=0

]

1
2⁄

+ 1} 

≤  ω(𝑓, 𝛿𝑛) {
1

𝛿𝑛
((

𝑐𝑛
2𝑛(𝑛 + 𝑝)

𝑑𝑛
2

−
𝑛𝑐𝑛

𝑑𝑛
+ 1) 𝑥2 + (2

𝑐𝑛𝑛

𝑑𝑛
2 −

1

2𝑑𝑛
) 𝑥 +

1

3𝑑𝑛
2)

1
2⁄

 + 1 } 

=  ω(𝑓, 𝛿𝑛) {
1

𝛿𝑛
((

𝑐𝑛
2𝑛2

𝑑𝑛
2

+
𝑐𝑛

2𝑛𝑝

𝑑𝑛
2

−
𝑛𝑐𝑛

𝑑𝑛
+ 1) + (2

𝑐𝑛𝑛

𝑑𝑛
2 −

1

2𝑑𝑛
) +

1

3𝑑𝑛
2)

1
2⁄

 + 1 } 

≤  ω(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(𝑛

𝑐𝑛

𝑑𝑛
− 1)

2

 + (2
𝑐𝑛𝑛

𝑑𝑛
2 −

1

2𝑑𝑛
) +

1

3𝑑𝑛
]

1
2⁄

+ 1 } 

≤  ω(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(𝑛

𝑐𝑛

𝑑𝑛
− 1)

2

 + (
23

6

1

𝑑𝑛
)]

1
2⁄

+ 1 } 

≤  4ω(𝑓, 𝛿𝑛) {
1

𝛿𝑛
[(𝑛

𝑐𝑛

𝑑𝑛
− 1)

2
 +

1

𝑑𝑛
]

1
2⁄

+ 1 }. 

It was shown by this theorem that the approximation is at √(𝑛
𝑐𝑛

𝑑𝑛
− 1)

2
 +

1

𝑑𝑛
 speed and this speed 

can be increased according to the choice of (𝑐𝑛) and (𝑑𝑛). 

In the definition below; The space of functions from the Lipcitz class given by (Ozarslan and 

Aktuglu 2013) will be recalled, which will be used for the calculation of the operator's degree of 

approximation. 

Let 𝛼1 ≥ 0, 𝛼2 > 0 and 𝛾 ∈ (0,1]. For 𝐾 which is a positive constant, the Lipschitz-type space, 

defined using two parameters, is represented as follows: 

𝐿𝑖𝑝𝐾

𝛼1,𝛼2(𝛾) = {𝑓 ∈ 𝐶[0,1]: |𝑓(𝑢) − 𝑓(𝑥)| ≤ 𝐾
|𝑢 − 𝑥|𝛾

(𝑢 + 𝛼1𝑥2 + 𝛼2𝑥)
𝛾
2

: 𝑢 ∈ [0,1], 𝑥 ∈ (0,1]}. 

Theorem 4.2 Let 𝑥 ∈ (0,1] and 𝑓 ∈ 𝐿𝑖𝑝𝐾

𝛼1,𝛼2(𝛾) then  

‖𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)‖

𝐶[0,1]
≤ 𝐾ω (

ℳ𝑛,2(𝑥)

𝛼1𝑥2 + 𝛼2𝑥
)

𝛾
2

 

is holds.  

Proof 

Let 𝛼1 ≥ 0, 𝛼2 > 0 and 𝛾 ∈ (0,1]. From the Holder’s inequality 

|𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) − 𝑓(𝑥)| ≤ 𝑑𝑛 ∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
(∫ |𝑓(𝑢) − 𝑓(𝑥)|

2
𝛾𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

)

𝛾
2
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≤ 𝑑𝑛 (∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ |𝑓(𝑢) − 𝑓(𝑥)|

2
𝛾𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

)

𝛾
2

 

≤ 𝑀𝑑𝑛 (∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫

|𝑢 − 𝑥|2

(𝑢 + 𝛼1𝑥2 + 𝛼2𝑥)
𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

)

𝛾
2

 

≤
𝑀

(𝛼1𝑥2 + 𝛼2𝑥)
𝛾
2

𝑑𝑛 (∑   

∞

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ |𝑢 − 𝑥|2𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

)

𝛾
2

 

=
𝑀

(𝛼1𝑥2 + 𝛼2𝑥)
𝛾
2

(ℳ𝑛,2(𝑥))

𝛾
2
 

this is the desired result. 

 

A few applications will now be given to the theoretical study of structures. In the first two 

examples, the graphs related to the approach will be given, and in the third and fourth examples, the 

approach speed calculation that changes according to the sequence selection will be given. 

Example 4.1  

𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) = 𝑑𝑛 ∑   

𝑚

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑓(𝑢)𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

 𝑛 = 20, 𝑚 = 30  and for  𝑥 ∈ [0,1] let    𝐾𝑛,𝜗(𝑥) =  (−1)𝜗(𝑛𝑥)𝜗𝑒−𝑛𝑥𝛼𝑛, (𝑐𝑛) = 1 and (𝑑𝑛) = √𝑛. 

In this case, the graph of the operator's approximation to the 𝑓(𝑥) =
1

𝑒𝑥+1+1
 is given in Figure 4.1.  

 

            Figure 4.1 Approximation to the 𝑓(𝑥) =
1

𝑒𝑥+1+1
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Example 4.2  

𝐿𝑛
𝒦,𝒢,ℐ(𝑓, 𝑥) = 𝑑𝑛 ∑   

𝑚

𝑟=0

𝑁𝑛,𝑟(𝑥)
(−𝑐𝑛)𝑟

𝑟!
∫ 𝑓(𝑢)𝑑𝑢

𝑟+1
𝑑𝑛

𝑟
𝑑𝑛

 

 𝑛 = 15, 𝑚 = 20  and for  𝑥 ∈ [0,1], let    𝐾𝑛,𝜗(𝑥) =  (−1)𝜗(𝑛𝑥)𝜗𝑒−𝑛𝑥𝛼𝑛, (𝑐𝑛) = 1 and (𝑑𝑛) = √𝑛. 

In this case, the graph of the operator's approximation to the 𝑓(𝑥) =
1

8
cos(𝑥2 + 1) (𝑥2 + 1) + 1 is 

given in Figure 4.2.  

 

              Figure 4.2 Approximation to the 𝑓(𝑥) =
1

8
cos(𝑥2 + 1) (𝑥2 + 1) + 1  

 

Example 4.3  

Let 𝑓(𝑥) =
2

𝑒(2𝑥+5)+1
, (𝑐𝑛) = 1 and (𝑑𝑛) = 𝑛.Then, rate of convergence of approximation of 

operators to function is given Table 4.1. 

Table 4.1. The error bound of function 𝑓(𝑥) =
2

𝑒(2𝑥+5)+1
  for (𝑐𝑛) = 1 and (𝑑𝑛) = 𝑛  

𝒏 Error estimate of 𝒇(𝒙) =
𝟐

𝒆(𝟐𝒙+𝟓)+𝟏
  with 𝑳𝒏

𝓚,𝓖,𝓘(𝒇, 𝒙) 

10 

102 

103 

104 

105 

106 

107 

108 

109 
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Example 4.4  

For 𝑓(𝑥) =
2

𝑒(2𝑥+5)+1
, let taking  (𝑐𝑛) = 𝑛 and (𝑑𝑛) = 𝑛2.Then, rate of convergence of 

approximation of operators to function is given Table 4.2. 

 

Table 4.2. The error bound of function  for (𝑐𝑛) = 𝑛 and (𝑑𝑛) = 𝑛2 

𝒏 Error estimate of 𝒇(𝒙) =
𝟐

𝒆(𝟐𝒙+𝟓)+𝟏
  with 𝑳𝒏

𝓚,𝓖,𝓘(𝒇, 𝒙) 

10 0.00965241619200

102 0.001053262321000

103 0.000106264012000

104 0.000010635841220

105 0.1063667936 

106 0.1063686954

107 0.1063688856

108 0.1063689046

109 

 

4. CONCLUSION 

This Kantorovich type modified operator is a useful operator for approximating to functions. The 

operator also showed appropriate approximation properties for functions from the Lipchitz class. 

Since the theoretical work is supported by graphical and numerical calculations, it will guide 

researchers who will make Kantorovich modifications of different operators. In the next study, the 

idea was formed to examine the different approximation properties of the two-dimensional version 

of this operator. 
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