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ABSTRACT 

The inverse kinematic solution is one of the major problems for real time application of robot control. 

The conventional solution methods such as geometric, algebraic and numerical iterative are 

insufficient and slow in the inverse kinematic solution. Recently, different solution methods based on 

artificial intelligence techniques have been developed in order to solve inverse kinematics of 

especially redundant robots and to reduce the solution time. In this study, an Artificial Neural 

Network (ANN) model was designed to solve the inverse kinematics of the 5 degrees of freedom 

(DOF) robotic arm. Network was trained using database obtained from the experimental setup and 

ANN model was validated by experimental works. The Neural Network (NN) calculated the joint 

angles with high accuracy with respect to the given (x, y, z) Cartesian coordinates. The comparison 

results show that the proposed NN has a high correlation (R=0.9988) and superior performance for 

solving inverse kinematics of the robotic arm. 
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1. INTRODUCTION

Robot manipulators are widely used in various industrial automation applications and also the other 

specialized fields as medical, military. Manipulator applications involve pick and place an object in 

a specific position, precision grasping and manipulation of the objects. To accomplish these, the end-

effector motion which should be efficiently controlled is defined. Robot kinematics defined mapping 

between joint space and Cartesian space (x, y, z) is needed for the position control of robot 

manipulators. Forward kinematics and inverse kinematics are used for the kinematic analysis of robot 

manipulators. Forward kinematics compute the position, orientation and velocity of the end effector 

from the joint displacements and angles, whereas inverse kinematics compute the joint displacements 

and angles from the end effectors position and velocity.  

The inverse kinematics solution is generally difficult for control of robot manipulators. The inverse 

kinematic problem is traditionally solved using the geometric, algebraic and iterative models. These 

have certain disadvantages, for example, the closed-form solutions are not guarantee by algebraic 

methods, and if the geometric method is used closed-form solutions of the first three joints must be 

geometrically. A closed form or analytic solution can be determined using geometric and algebraic 

approaches. But, this solution becomes more challenging as the robot joints increases, and closed-

form solution do not exist for some serial-link manipulators. The numerical iterative inverse 

kinematics solution converges to a single solving based on beginning point. Also, in these 

conventional solution methods, the advanced complexity in the geometrical structure of the robot can 

cause in a prohibitive computational cost. Therefore, researchers have studied on different solution 

methods based on artificial intelligence techniques for solving the inverse kinematics.  
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Köker (2013) presented the inverse kinematics solution for the six-joint Stanford robot by combining 

characteristics of neural network and the genetic algorithms. Tejomurtala and Kak (1999) analyzed 

backpropagation feed-forward neural networks whose weights are described in terms of sine and 

cosine to match the forward kinematics of the robot. Karlik and Aydin (2000) investigated the best 

neural-network configurations for solving the inverse kinematics of a six-joint robot manipulator. To 

achieve the inverse kinematics solutions, placement and orientation angles of robot were used. Köker 

et al. (2004) proposed the neural network to solve inverse kinematics using cubic trajectory planning 

for the three joint robot manipulator. Bingul et al. (2005) applied backpropagation neural network to 

inverse kinematics problem for 6R robot manipulator with an offset wrist which does not exist closed 

form solution. Mayorga and Sanongboon (2005) presented an neural network for fast calculation of 

the inverse kinematics and effective geometrically bounded singularities prevention of redundant 

manipulators. Hasan et al. (2006) presented ANN with a learning algorithm based on adaptive 

updating of the weights of the network to solve the inverse kinematics problem.  6-DOF manipulator 

was simulated to control of x-y-z motion. Daya et al. (2010) presented a neural network architecture 

which consist of 6 sub-neural to control the position of robotic manipulators. Duka (2014) used feed-

forward neural network computed desired trajectories in the two-dimensional Cartesian coordinate 

system for the three-link planar manipulator. Zacharie (2012) implemented Logistic Belief Neural 

Network (LBNN) on a mobile robot with two gripped arms. LBNN was designed to control five 

degrees of freedom robot arm in real time. Jiang and Ishita (2008) presented control method 

consisting of traditional controller and neural network controller for trajectory tracking control of 

industrial robot manipulators. Neural network controller played the major role in the generating of 

the actuating force/torque required by the dynamic trajectory. El-Sherbiny et al. (2018) compared 

ANN, adaptive neuro fuzzy inference system (ANFIS) and genetic algorithm techniques used to solve 

the inverse kinematics problem of the 5-DOF robot arm. Xu et al. (2019) suggested recurring neural 

network based controller for redundant manipulator subject to kinematic uncertainties. The controller 

can provide robustness and adaptability to even under uncertain conditions because it is able to 

learning uncertain model parameters online. 

The control of robotic manipulators has a long history because of difficult manipulation tasks and has 

a wide range of research areas for researchers. Even though many robots work with high accuracy, 

repeatability, and stability, research continue in improvement of robot manipulators for the extra 

enhancement of precision in robot control. In real time control of the robot manipulator, one of the 

most important and difficult problems to solve is the inverse kinematics solution. In this study, a 

robotic arm with 5 degrees of freedom that is similar to the human arm was built. Optimum ANN 

configuration was investigated to solve the inverse kinematics for the purpose of position control of 

the robotic arm in real time. The designed NN model was trained using the database obtained from 

the experimental setup. After training completes, validation of the ANN model was carried out using 

new experimental data that never encountered before. 

 

2. MATERIAL AND METHODS 

2.1. The Robotic Arm 

Similar to the human arm, the robotic arm which has 5-DOF consists of basic structures which 

comprises connected to three subparts and a gripper. These subparts are shoulder, upper arm, and 

forearm. The shoulder is a length of 100 mm and a weight of 282 gr while the upper arm and forearm 

have 250 mm length, 588 gr and 520 gr weight respectively. The distance from the center of gripper 

to the wrist is 100 mm and a weight of 172 gr. 

Mechanical structure design was carried out using “Sheet Metal Module” in Solidworks (Figure 1). 

The robotic arm was built from aluminum material due to its lightness using the proper manufacturing 

process. 
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Figure 1. 3D CAD model of the robotic arm 

 

All degrees of freedom are driven by servo motors. Dynamixel MX-28R and MX-64R servo motors 

given technical specifications in Table-1 were used for rotation of the joints. 

 

Table 1. Technical specifications of the servo motors 

 
Dynamixel  

MX-28R 

Dynamixel  

MX-64R 

Stall Torque 

2.3N.m (11.1V,1.3A) 5.5N.m (11.1V,.9A) 

2.5N.m (12V, 1.4A) 6.0N.m (12V, 4.1A) 

3.1N.m (14.8V,1.7A) 7.3N.m (14.8V, 5.2A) 

Weight 72 g 162 g 

No-load Speed 

50rpm(11.1V) 58rpm (11.1V) 

55rpm ( 12V) 63rpm (12V) 

67rpm(14.8V) 78rpm (14.8V) 

Reduction Ratio 193:1 200:1 

 

2.2. Kinematic Analysis of the Robotic Arm 

2.2.1 Forward Kinematics 

In forward kinematics, the goal is to obtain coordinates of end-effector, given the known joint 

coordinates. The robotic arm has 5-DOF which are three at the shoulder and two at the elbow. All 

joints of the arm are revolute. The coordinate frame to each link has been appointed considering the 

Denavit-Hartenberg (D-H) convention which is represented in Figure 2. The D-H parameters are 

indicated in Table 2, where θi, αi, di, ai represent rotation about the Z-axis, rotation about the X-axis, 

transition along the Z-axis, and transition along the X-axis respectively. 
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Figure 2. The coordinate frame to each link 

 

Table 2. Denavit-Hartenberg parameters  

 di αi ai θi 

1 d1=100 90o 0 θ1+90o 

2 0 90o 0 θ2+90o 

3 d3=250 90o 0 θ3+90o 

4 0 -90o 0 θ4 

5 d5=250 90o 0 θ5 

 

According to the Denavit-Hartenberg, the homogeneous transformation matrix for two adjacent 

frames is given as: 

𝑇𝑖
𝑖−1 = [

cos 𝜃𝑖 −cos𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 sin 𝜃𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝛼𝑖 cos 𝜃𝑖 −sin𝛼𝑖 cos 𝜃𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

]    (1) 
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If the D-H parameters in Table 2 substituted into (1), the transformation matrices of each adjacent 

frame are obtained: 

𝑇1
0 = [

cos 𝜃1 0 sin 𝜃1 0
sin 𝜃1 0 − cos 𝜃1 0
0 1 0 𝑑1
0 0 0 1

] 

𝑇2
1 = [

cos 𝜃2 0 sin 𝜃2 0
sin 𝜃2 0 − cos 𝜃2 0
0 1 0 0
0 0 0 1

] 

𝑇3
2 = [

cos 𝜃3 0 sin 𝜃3 0
sin 𝜃3 0 − cos 𝜃3 0
0 1 0 𝑑3
0 0 0 1

] 

𝑇4
3 = [

cos 𝜃4 0 − sin 𝜃4 0
sin 𝜃4 0 cos 𝜃4 0
0 −1 0 0
0 0 0 1

] 

𝑇5
4 = [

cos 𝜃5 0 sin 𝜃5 0
sin 𝜃5 0 − cos 𝜃5 0
0 1 0 𝑑5
0 0 0 1

]                  (2) 

The transformation matrix 𝑇0
5 which is from base link to end-effector can be obtained as product of 

matrices for every joint given in 2: 

𝑇5
0 = 𝑇1

0. 𝑇2
1. 𝑇3

2. 𝑇4
3. 𝑇5

4 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧
0 0 0 1

]        (3) 

where p (px,py,pz) is position vector of the end-effector and n (nx,ny,nz), o (ox,oy,oz) and a (ax,ay,az) are  

orthogonal unit vectors that define orientation of end-effector frame.  

2.2.2 Inverse Kinematics 

In inverse kinematics, the goal is to compute joint displacements, given the reference orientation and 

position for the end-effector. In this study, ANN approach were used for solving the inverse 

kinematics problem. 

2.2.2.1 Analytical Inverse Kinematic 

As given in (3), the relationship between the reference base frame and the end point is: 

𝑇1
0. 𝑇2

1. 𝑇3
2. 𝑇4

3. 𝑇5
4 = 𝑇𝑒𝑛𝑑                (4) 

If the both side of  equation (4) product with (𝑇0
1)−1 : 

𝑇2
1. 𝑇3

2. 𝑇4
3. 𝑇5

4
⏟        

𝐿1

= (𝑇1
0)−1 𝑇𝑒𝑛𝑑⏟        
𝑅1

                         (5) 

Left and right side of equation (5) denote L1 and R1 respectively. The equations L1(3,2)=R1(3,2) and 

L1(3,4)=R1(3,4) must be satisfied. These relations can be used to solve for θ1. This yield: 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑝𝑥 − 𝑜𝑥 𝑑5, −𝑜𝑦 𝑑5 + 𝑝𝑦 )          (6) 

The equations L1(2,2)=R1(2,2) and L1(2,4)=R1(2,4) can be also derived and these relations provide 

the solution for θ2: 
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𝜃2 = 𝑎𝑐𝑜𝑠( (𝑜𝑧 𝑑5 + 𝑑1 − 𝑝𝑧)/𝑑3)                 (7) 

Equation (8) can be obtained to product with (T2
1)−1 both side of equation (5): 

𝑇3
2. 𝑇4

3. 𝑇5
4

⏟      
𝐿2

= (𝑇2
1)−1 (𝑇1

0)−1. 𝑇𝑒𝑛𝑑⏟            
𝑅2

              (8) 

Left and right side of equation (8) denote L2 and R2 respectively. Using the relation L2(3,4)=R2(3,4), 

L2(3,2)=R2(3,2) and L2(3,4)=R2(3,4), θ4 and θ3 can be provided respectively as follows: 

𝜃4 = acos (((𝑑1 − 𝑝𝑧) cos(𝜃2) + (𝑝𝑥 𝑐𝑜𝑠(𝜃1) + 𝑝𝑦 𝑠𝑖𝑛(𝜃1)) sin(𝜃2) − 𝑑3)/𝑑5) (9)     

𝜃3 = 𝑎𝑡𝑎𝑛2(𝑜𝑥 cos(𝜃1) cos(𝜃2) + 𝑜𝑦 cos(𝜃2) sin(𝜃1) + 𝑜𝑧 sin(𝜃2) , 𝑜𝑦 cos(𝜃1) − 𝑜𝑥 sin(𝜃1)   

                (10) 

The equations L2(3,1)=R2(3,1) and L2(3,3)=R2(3,3) can be used to solve θ5. These yields: 

𝜃5 = 𝑎𝑡𝑎𝑛2(−𝑎𝑧 cos(𝜃2) + 𝑎𝑥 cos(𝜃1) sin(𝜃2) + 𝑎𝑦 sin (𝜃1) sin(𝜃2) , −𝑛𝑧 cos(𝜃2) +

𝑎𝑧 cos(𝜃1) sin(𝜃2) + 𝑛𝑧 sin (𝜃1) sin(𝜃2)         (11) 

2.2.2.2 The Artificial Neural Network Approach 

ANN has been applied to different research in many fields of science and successfully solve complex 

and nonlinear problems, thanks to its ability to learn and generalize. Neural networks are basically 

sets of mathematical functions modeled in a computer program, which simulate basic abilities of 

human brain and neural biology.  

An input layer, at least one hidden layer, and one output layer exist in the multilayer feed-forward 

neural network. Each layer contains processing elements called neurons. Neurons in layers are joined 

by connection weights associated with real numbers. The weights are updated in the training operation 

of the neural network. The sum input (xi) to layer neuron (i), is sum of the weight (wij), multiplied by 

the input value (xj) from the previous layer neuron (j) for each connection. 





N

j
jijii xwwx

1
0

         (12) 

where N is the number of inputs, wi0 is the bias of neuron. The bias is generally considered equal to 

1. Therefore, the corresponding weight could shift the activation function throughout the abscissa 

axis (Haykin, 1999).  

Output of the i neuron, Vi is as follows: 

)( ii xfV 
                                    

where f is the activation function. In the neural network training process, Q set training data are 

offered to network. An iterative algorithm regulates the weights because the outputs (yk) obtained 

with respect to the inputs should be as close as possible to the target outputs (dk). For neural network 

with total output number of K, the Mean Square Error (MSE) function that should be minimized is as 

follows; 

 
2

1 1

)()(
1


 





Q

q

K

k

kk qyqd
KQ

MSE

        (13) 

In this study, back propagation algorithm is used to minimize MSE by updated the weights of 

connections. Updated weights are calculated as follows; 

11   t

ij

t

ij

t

ij www
          (14) 
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where 
1 t

ijw
 is the (+/-) incremental change in the weight and this is assigned by the Levenberg-

Marquardt optimization as follows; 

    gIHeJIJJw TTt

ij

111   
       (15) 

where I is the identity matrix, μ is adaptive training parameter, J is Jacobean matrix and e is all errors. 

The adjusted weights and bias are given sweep rearwards by neural network. Thus, new outputs of 

the neural network are computed. The MSE is recomputed using
1 t

ij

t

ij ww
. If this new MSE value 

is less than calculated in the previous, training parameter is decreased μ by μ-. If the MSE value is 

not reduce, it is increased μ by μ+. The algorithm is supposed to have converged when the gradient 

norm is smaller than some preconcert value, or when the MSE has been decreased to some error aim. 

When weights reach ideal values that allow the network to produce outputs that are close enough to 

desired outputs, the training process of ANN is completed. After the weights are adjusted, the ANN 

model is tested by giving only varied input data. If the ANN model replies correctly to input data not 

included in the training data, it is said that it has generalization ability. 

2.3. Experimental Setup 

In this paper real time applications of the robotic arm were performed. The fundamental configuration 

of robotic arm is shown in Figure 3.  

 

 

Figure 3. Fundamental configuration of robotic arm  

 

The experimental setup has two parts, hardware and software. Hardware consist of power supply, 

computer, usb converter and servo motors. MX series Dynamixel DC servo motors were used to set 

up the robotic arm. According to the stall Torque, MX − 28R, MX − 64R are assigned to form the 

wrist, elbow and shoulder respectively. Computer comprises i7 cpu, 4 GB Ram and onboard graphic 

card. All motors contain a microcontroller with RS-485 interface. The RS-485 protocol is employed 

for communication between computer and the arm. Servo motors are connected with computer 

through “USB2Dynamixel”. USB2Dynamixel, is a device to convert a signal from R485 to USB 

between computer and servo motors.  

Algorithm was developed using Matlab-Simulink software. Communication between Matlab-

Simulink and servo motors are established using RapidSTM32 library. RapidSTM32 is a Simulink 

device driver block set and tool suite for STM32 microcontroller family. 
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3. NEURAL NETWORK IN IMPLEMENTATION FOR THE INVERSE KINEMATIC 

The artificial neural network was applied to solve the inverse kinematic of 5-DOF robot arm in this 

section. Neural network model was developed based on the experimental work. Training data and test 

data was generated using database obtained from the experimental setup. Neural network model was 

trained using 480 randomly selected data points and 113 data points were utilized to test network 

performance and validate of the predictive capability of the model. Cartesian coordinates (x, y, z) 

were chosen as input variables and joint angles (1, 2, 3, 4, 5) were set as the output variables. 

Figure 4 depicts the schematic structure of the neural network used in the study, with its three inputs 

and five outputs. The different combination of Cartesian coordinates (x, y, z) used as training input 

data is shown in Figure 5. 

 

 

Figure 4. Configuration of multilayer neural network for solving the inverse kinematic  

 

Figure 5. Training input data 
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Feed-forward neural networks which have varied topologies (number of layers, number of neurons), 

various training algorithm and parameters and activation functions were designed and the optimum 

network configuration was investigated. Each network was trained to different levels and, among all, 

the one qualified by the global minimum generalization error and the fastest was selected. Table 3 

shows functions and architecture of the neural network proposed for inverse kinematic solution. The 

optimum ANN model configuration was obtained to be 3-10-5 with 10 neurons in hidden layer. 

 

Table 3. Functions and architecture of the neural network. 

Network Feed-forward backpropagation network 

Training method Supervised training 

Transfer function 
Hyperbolic tangent sigmoid function (Hidden Layer) 

Pure linear function (Output Layer) 

Training function Levenberg-Marquardt 

Learning function Gradient descent 

Performance function Mean squared error 

 

The trial MSE values against the iteration number using selected ANN topology was indicated in 

Figure 6. The ANN was trained with a learning rate of 0.2 and momentum coefficient of 0.5 at 8816 

epochs. It can be seen from Figure 6 that the values of MSE converged to approximately 1,74×10-3 

in 8816 epochs and considering structure of the neural network model, training of the network was 

determined to be successful. 

 

 

Figure 6. Training performance of the neural network  

 

4. RESULTS AND DISCUSSION 

When the values obtained from the experiments and the prediction results of the ANN model were 

compared, it was seen that there was a strong correlation between them. The correlation between 

0 1000 2000 3000 4000 5000 6000 7000 8000
10

-3

10
-2

10
-1

10
0

10
1

Best Training Performance is 0.0017423 at epoch 8816

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r 

 (
m

s
e

)

8816 Epochs

 

 

Train

Best

973



 

Year 4 (2020)   Vol:16                                         Issued in DECEMBER, 2020                                                   www.ejons.co.uk 

 

EJONS International Journal on Mathematic, Engineering and Natural Sciences  ISSN 2602 - 4136 

model output and the desired values to represent the training performance of optimal ANN topology 

is shown in Figure 7. Coefficient of determination (R) of 0.9988 was obtained for predicting joint 

angles. This shows that the ability of ANN to solve the inverse kinematic was very good. 

 

    

Figure 7. The correlation between ANN model output and the target values 

 

After training, validation of the ANN model was established giving fully unseen data (i.e. test data). 

The different combination of Cartesian coordinates (x, y, z) given as input data to NN model is shown 

in Figure 8.  

 

Figure 8. Validation data set 

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

Target

O
u

tp
u

t 
~

=
 1

*T
a

rg
e

t 
+

 0
.0

0
3

4

Training: R=0.9988

 

 

Data

Fit

Y = T

-10
0

10
20

30
40

50

10

20

30

40

50

-15

-10

-5

0

5

10

x [cm]y [cm]

z
 [

c
m

]

974



 

Year 4 (2020)   Vol:16                                         Issued in DECEMBER, 2020                                                   www.ejons.co.uk 

 

EJONS International Journal on Mathematic, Engineering and Natural Sciences  ISSN 2602 - 4136 

 

The comparative parity plot for validation results of ANN model and experimental joint angles (1, 

2, 3, 4, 5) is indicates in Figure 9. As can be seen in test (validation) results, neural network model 

has a very strong prediction and a good generalization on solving inverse kinematic problem.  
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Figure 9. Experimental values and ANN predictions of joint angels for validation data set 

 

5. CONCLUSION 

In this study, the NN model was created to solve the inverse kinematics problem and predict joint 

angles for a 5-DOF robotic arm. Then NN was trained until the error is acceptable using experimental 

data. The training performance of the designed network was evaluated and a high correlation 

(R=0.9988) was obtained. Considering the validation results, it is seen that the NN method has good 

absolute fit to the reference. As a result, NN model has solved inverse kinematic problem with high 

accuracy, has provided a strong estimate and good generalization capability. Therefore, this network 

model can be used to compute joint displacements needed to move the end effector to a desired 

position. 

 

REFERENCES 

Bingul, Z., Ertunç, H.M. and Oysu, C. (2005). Applying neural network to inverse kinematic problem 

for 6r robot manipulator with offset wrist. 7th International Conference on Adaptive and Natural 

Computing Algorithms, 112-115. 

Daya, B., Khawandi, S. and Akoum, M. (2010). Applying neural network architecture for inverse 

kinematics problem in robotics.  Journal of Software Engineering and Applications, 3, 230-239. 

0 20 40 60 80 100 120
-0.5

0

0.5

1

1.5

2

2.5

3

Data Number

E
x
p
e
ri
m

e
n
ta

l 
T

e
s
t 

D
a
ta

 a
n
d
 N

e
u
ra

l 
N

e
tw

o
rk

theta4

0 20 40 60 80 100 120
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Data Number

E
x
p
e
ri
m

e
n
ta

l 
T

e
s
t 

D
a
ta

 a
n
d
 N

e
u
ra

l 
N

e
tw

o
rk

theta5

976



 

Year 4 (2020)   Vol:16                                         Issued in DECEMBER, 2020                                                   www.ejons.co.uk 

 

EJONS International Journal on Mathematic, Engineering and Natural Sciences  ISSN 2602 - 4136 

Duka, A.V. (2014). Neural network based inverse kinematics solution for trajectory 

tracking of a robotic arm. Procedia Technology, 12, 20-27. 

El-Sherbiny, A., Elhosseini, M.A. and Haikal, A.Y. (2018). A comparative study of soft computing 

methods to solve inverse kinematics problem. Ain Shams Engineering Journal, 9(4), 2535-2548. 

Hasan, A.T., Hamouda, A.M.S., İsmail, N. and Al-Assadi, H.M.A.A. (2006). An adaptive-learning 

algorithm to solve the inverse kinematics problem of a 6 D.O.F serial robot manipulator. Advances 

in Engineering Software, 37, 432-438. 

Haykin, S. (1999). Neural networks: A comprehensive foundation, 2nd ed., Prentice Hall, New 

Jersey. 

Jiang, Z.H. and Ishita, T. (2008). A neural network controller for trajectory 

control of industrial robot manipulators. Journal of computers, 3(8), 1-8. 

Karlik, B. and Aydin, S. (2000). An improved approach to the solution of inverse kinematics 

problems for robot manipulators. Engineering Applications of Artificial Intelligence,13, 159-164. 

Köker, R. (2013). A genetic algorithm approach to a neural-network-based inverse 

kinematics solution of robotic manipulators based on error minimization. Information Sciences, 222, 

528-543. 

Köker, R., Öz, C., Çakar, T. and Ekiz, H. (2004). A study of neural network based inverse kinematics 

solution for a three-joint robot. Robotics and Autonomous Systems, 49, 227-234. 

Mayorga, R.V. and Sanongboon P. (2005). Inverse kinematics and geometrically bounded 

singularities prevention of redundant manipulators: An artificial neural network approach. Robotics 

and Autonomous Systems, 53, 164-176. 

Tejomurtula, S. and Kak, S. (1999). Inverse kinematics in robotics using neural networks. Information 

Sciences, 116, 147-164. 

Xu, Z., Li, S., Zhou, X., Yan, W., Cheng, T. and Huang, D. (2019). Dynamic neural networks based 

kinematic control for redundant manipulators with model uncertainties. Neurocomputing, 329, 255-

266. 

Zacharie, M. (2012). Advanced Logistic Belief Neural Network Algorithm for Robot Arm Control. 

Journal of Computer Science, 8(6), 965-970. 

 

 

 

 

977

https://www.sciencedirect.com/science/journal/20904479
https://www.sciencedirect.com/science/journal/20904479/9/4



